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Abstract: Designing new systems involves collaboration across mechanics, electronics, and computer science, often 

through multiple iterations. We introduce a method using large language models to streamline architecture creation, 

incorporating the requirements, functional, logical, and physical (RFLP) concept, thus speeding up the process and 

reducing errors. A proof of concept is demonstrated within Cameo Systems Modeler, applied to a remote-controlled 

autonomous car project. Feedback from model-based system engineering experts confirm the approach's relevance and 

provides direction for enhancements. 
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1 Introduction 

In our modern world systems become more and more complex. The different areas of mechanics, electronics and computer 

science must work together to design and implement a new system, e.g., a car in the automotive industry (Joseph 

D'Ambrosio, 2017). Model-Based Systems Engineering (MBSE) introduces a modern approach to handle the complexity 

and eases collaboration between experts from different fields. By using diagrams to represent various system aspects, 

MBSE streamlines the design of system architectures (Madni and Sievers, 2018).  

The development of a system architecture is a process involving multiple experts and iterations. At the beginning, 

requirements are derived from the Stakeholders, that must be understood and interpreted by the system architects. A design 

process like RFLP (Requirements, Functional, Logical, and Physical design) (Baughey, 2011) systematically guides 

experts through the steps of system development. This design process is iterated several times by going from a simple and 

shallow structure to a detailed and complex architecture following the twin peaks model (Chung and do Prado Leite, 2009). 

Such iterative improvements are very time-consuming. Furthermore, the creation and change of architectures, requires the 

creation and maintenance of tracelinks. They ensure the correct connections between system views and can be especially 

tedious work and error prone (Gotel et al., 2012). Parallel to advancements in systems engineering, there has been a 

significant evolution in artificial intelligence, highlighted by the emergence of generative AI models such as ChatGPT 

(Bahrini et al., 2023) and LLaMA (Touvron et al., 2023). These models, present new opportunities for automating system 

architecture generation. 

This paper explores the potential of leveraging large language models to automate the initial drafting of system 

architectures. We propose the development of a Cameo Systems Modeler plugin that integrates these AI capabilities to 

modify diagrams and model elements directly, thus supporting experts in refining these drafts into detailed, final designs. 

This is a novel approach to create system designs in contrast to established approaches like function-based elicitation and 

design space exploration (Müller et al., 2019; Vanommeslaeghe et al., 2019). 

The structure of this paper is organized as follows: Section 2 introduces essential concepts in MBSE and AI to provide a 

foundation for understanding the plugin's functionality. Section 3 offers a comprehensive examination of the plugin and 

its role in the architectural design process. Section 4 showcases a practical application using a RaceCar model project and 

includes an evaluation from MBSE experts. Finally, Section 5 summarizes the main findings and discusses directions for 

future research. 

2 Fundamentals and Related Work 

2.1 Fundamentals of Model-Based Systems Engineering  

MBSE uses models as the primary medium for information exchange throughout the system development lifecycle to 

improve productivity, quality, and traceability. As defined by INCOSE, MBSE supports system requirements, design, 

analysis, verification and validation from conceptual design through development and into later lifecycle phases (Walden 

et al., 2003). Key benefits include complexity management, unified cross-domain models for better communication 

between disciplines, and integration of disparate data sets to maintain consistency throughout the development process. 

The RFLP process, which details requirements, functional and logical architectures, and the creation of physical structures,   
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emphasizes the method's systematic approach to design and traceability (Baughey, 2011). Guidelines, recommendations, 

or so-called architecture drivers can improve the design process (Kaiser et al., 2016; Kharatyan et al., 2022). 

2.2 Advances in Large Language Models  

The convergence of AI and Large Language Models (LLMs) represents a significant leap forward in computational 

technologies, particularly in natural language processing (NLP). AI, machine learning, NLP, robotics and computer vision, 

aims to automate complex tasks and improve decision making (McCarthy et al., 1955). LLMs, especially with the advent 

of the Transformer architecture (Vaswani et al., 2017), have revolutionized language understanding and generation, 

offering improved training speed and efficiency. Innovations such as the GPT series and more efficient models such as 

LLaMA and Mistral 7B (Jiang et al., 2023; Touvron et al., 2023) demonstrate the evolving capabilities of LLMs and their 

adaptability to different linguistic tasks, highlighting the rapid progress of the field and the potential for further advances. 

2.3 Opportunities and Challenges of LLMs in Engineering Applications  

The integration of LLMs into engineering, particularly within Model-Based Systems Engineering (MBSE), is an evolving 

frontier with great potential and notable challenges. LLMs, with their advanced capabilities in natural language processing, 

machine learning, and data mining, offer innovative solutions for requirements structuring, design validation, quality 

assurance, and data model generation. This section explores the opportunities offered by LLMs in engineering 

applications, supported by emerging trends and case studies, as well as the challenges that need to be addressed for their 

effective integration. 

Case Studies: Demonstrating the real-world application of LLMs to engineering use cases: 

- Software Engineering: FAN ET AL. (2023) demonstrate the utility of LLMs in code generation, error detection and 

optimization, marking a leap in software engineering practice (Fan et al., 2023). 

- Engineering design: GÖPFERT ET AL. (2023) discuss the role of LLMs in enhancing creativity and decision making 

in design, indicating a shift towards more intelligent methods (Göpfert et al., 2023). 

Challenges: Despite these opportunities, the application of LLMs within engineering faces several challenges: 

- Model hallucination and value misalignment: Issues such as irrelevant outputs and misalignment with engineering 

values hinder the effectiveness of LLMs, with CHEN ET AL. (2024) proposing the LLM-SE framework to mitigate 

this (Chen et al., 2024).  

- Integration complexity: The difficulty of integrating LLMs with existing tools and workflows, as well as data 

biases and the need for hybrid models, remains a significant barrier. 

- Informed Machine Learning: RUEDEN ET AL. (2021) emphasize the integration of domain-specific knowledge to 

improve the performance and reliability of LLMs, addressing data scarcity and model interpretability (Rueden et 

al., 2021). 

The integration of LLMs into MBSE represents a methodological advance that promises to improve engineering practice 

through increased efficiency and innovation. However, realizing this potential requires overcoming challenges related to 

model reliability, integration complexity and adherence to engineering standards. The forthcoming discussion on the 

"AI4Cameo Plugin" illustrates a practical application of AI in MBSE, demonstrating the theoretical benefits of LLMs 

through an intelligent assistant within the Cameo modelling tool, highlighting a move towards seamless integration and 

methodological innovation in engineering workflows.  

3 AI4Cameo Plugin 

The plugin simplifies using LLMs with Cameo Systems Modeler by utilizing several endpoints from the Cameo Java 

Application Programming Interface (API) to generate system elements and connections. First, we introduce the 

technologies used, then outline the plugin's software architecture, detailing its module functions and interfaces. Finally, 

we demonstrate the workflow for system architecture creation via the plugin. 

3.1 Technologies 

The application, functioning as a plugin for Cameo Systems Modeler, employs the Java Open API for direct interaction 

with diagram elements, alongside additional libraries for model processing. Cameo Systems Modeler, by Dassault 

Systèmes, enables system engineering with a focus on model-based systems engineering (MBSE), facilitated by its Java 

Open API for enhanced software customization and integration. Our work utilizes Version 2021x of this software. In the 

realm of artificial intelligence, LLMs like OpenAI's ChatGPT and Meta's LLaMA, utilize deep learning and the 

transformer architecture for a range of natural language processing tasks, from text generation to question-answering. For 

our project, we leverage Java libraries including OkHttp for efficient HTTP requests and network management, and the 

org.json library for JSON data manipulation, enhancing our application's functionality.  
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3.2 Software Architecture 

The main components for the AI4Cameo plugin are illustrated in Figure 1, where each individual module will be presented 

in the following.  

 

Figure 1. AI4Cameo Software Architecture 

The Cameo Plugin component realizes the basic structure for the plugin to be working with Cameo Systems Modeler. This 

is handled by the class AI4CameoPlugin. Furthermore, MainMenuConfigurator handles the menu item in the Cameo 

Systems Modeler interface, such that the function can be easily called. The main routine of the plugin is implemented in 

a class called ArchitectureCreationAction, which will be called when starting the plugin in the interface. The connection 

to large language models was realized in the LLM Processing module. The class LlmController was implemented for 

sending REST requests to the LLM servers. It is compatible to LLM servers offering the ChatGPT REST interface. For 

simplification we introduced a class Prompt, which bundles all informations, which is necessary for sending the request. 

This includes the prompt text itself, as well as temperature for further configuration. The interaction with the plugin was 

implemented using graphical user interfaces (GUIs) in Java, utilizing Swing. The main window, 

CreateArchitectureWindow, handles the configuration for the architecture and LLM. We implemented RequirementDialog 

for selecting requirements and ProcessingWindow to indicate that the architecture is being created, as this can take a longer 

processing time. The SysML Processing module performs the actual creation of SysML objects. Based on LLM results, 

FunctionalArchitectureCreator and LogicalArchitectureCreator generate functional and logical architectures, including 

SysML blocks, connections, stereotypes, and visual elements. The Requirement class simplifies handling requirement 

data, which the RequirementHandler processes. General functionalities are managed by the Utilities module. 

Configurations, including prompts and LLM specifications, are stored in config.json and processed by the Config class. 

Logging is managed by the Logger class. We also created an “AI4Cameo-Profile” in Cameo Systems Modeler, defining 

“Functional Block” and “Logical Block” stereotypes for architecture creation. This profile must be imported when 

generating a new project with an architecture. 

3.3 Plugin Workflow 

The novel workflow for the automatic generation of a system architecture involves three steps. First, we prepare a system 

specification that includes a general system description and optional requirements. Next, we start the plugin using the 

integrated user interface, which facilitates the use of the prepared system specification. Then, the plugin generates the 

system architecture: a functional architecture based on the system description and requirements, followed by a logical 

architecture using the system specification and functional architecture. Both architectures are created as block definition 

diagrams utilizing the stereotypes from the AI4Cameo-Profile. 

Preparation: For the architecture creation process, we consider two information sources for the system specification. A 

general system description shall guide the LLM to a correct overall system and set the correct context for the requirements. 

Furthermore, we consider an optional set of requirements to further specify the system and allow for a usage of tracelinks 

to the created functional elements. The requirements must be specified in Cameo Systems Modeler to be properly 

processed. This is achieved by storing the requirements in the containment tree of Cameo as a requirement element. For 

the architecture generation, we process the name and textual description of each requirement. A detailed description can 

thereby improve the quality of the architecture. 

Starting the plugin: The plugin is integrated into the user interface of Cameo Systems Modeler. The most important user 

configuration is accessible through these interfaces. An expert can do further configuration using the internal files, which 

will be presented in the architecture creation process. The plugin can be started from the main menu bar in Cameo using 

the custom menu item “AI4Cameo” and “Generate architecture from specification” as shown in Figure 2.  
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Figure 2. Interface integration of AI4Cameo in Cameo Systems Modeler 

In the following step, we configure the system architecture in the specification window (Figure 3). This allows us to insert 

the general system description. The “Select Requirements” button leads us to another dialog window to specify the 

requirements for the architecture generation. This reads all requirements from the current Cameo project and allows the 

user to select only a subset of requirements for a more fine-grained control of the specification. As models tend to respond 

with a short answer, we want to adjust the complexity of the system with our request. This is handled by specifying a 

minimum number of components for the functional and logical architecture in the interface. Lastly, the advanced options 

provide further configuration for the LLM. We can hereby, specify the number of max tokens for the answer and regulate 

the temperature of the model. 

 

Figure 3. AI4Cameo interface for the architecture configuration 

Generating a functional architecture: Based on the configuration in the user interface, the plugin first creates a 

functional architecture. We achieve this by prompting a LLM including chat history to create both architectures. For the 

functional architecture we use the following prompt as a template: 

You are a systems architect. Create a hierarchical functional architecture of the following system: {system}. Each function 

in the tree should contain partial functions as children. Take the following rules into account: {rules}. Try to create at 

least {nrOfComponents} functions. The parent (source) to child (target) relationship is modeled by connectors. Consider 

the following list of requirements for references (ref): {requirements}. Use only the following JSON structure for the 

functional architecture tree: {structure}. 

Each term in curly braces is replaced dynamically by the configuration from the user interface. Thereby we replace 

{system} with the system description and {nrOfComponents} with the given number from the interface. The {requirements} 

are given as a list in the format [id] name: text. Additionally, we provide a set of rules to follow for the creation of the 

functional architecture. This set of rules can be use-case specific and will replace the term {rules} during generation. They 

are stored in a separate “rules” file. The guidelines, recommendations, and architecture drivers from MBSE can be used 

to derive these rules. The response of the LLM shall be given in a certain form to simplify processing in Cameo Systems 

Modeler. For the functional architecture, we replace the term {structure} with the following Json template: 

{"meta":{"name":"DIAGRAM_NAME"},"content":{"blocks":[{"id":"F-01","name":"FUNCTION_NAME","ref": 

["REQUIREMENT_ID"]},{"id":"F-02","name": "FUNCTION_NAME", "ref": ["REQUIREMENT_ID"]}],"connectors": 

[{"id": "C-01","source": "F-01","target": "F-02"}]}}. 

We use the structure to create a diagram named by the value of DIAGRAM_NAME. This diagram is filled with the 

elements, which were returned in the Json array blocks. For each element, we generate a block with the stereotype 

“Functional Block” and create connections according to the “connectors” Json array. Finally, we generate the tracelinks 

by creating relations from the block elements to the requirements given in the “ref” field for each block respectively.  

Generating a logical architecture: We use the chat history to create the context for the generation of the logical 

architecture. Similarly, to the functional architecture, we use a prompt template and dynamically augment the missing 

information:  



NORDDESIGN 2024 

Create a hierarchical logical architecture of the following system: {system}. The logical architecture is a block definition 

diagram in form of a tree and contains exactly one root component, which models the system itself. Further partial 

components of the system are modeled as child components on multiple levels of the tree. Try to create at least 

{nrOfComponents} components. Take the following rules into account: {rules}. Consider the elements of the functional 

architecture for references (ref). The parent (source) to child (target) relationship is modeled by connectors. Use only the 

following JSON structure for the logical architecture tree: {structure}. 

The terms {system} and {nrOfComponents} are replace by the same values from the user interface. The process to create 

a logical architecture differs from a functional architecture. Hence, we provide a new set of rules for the logical architecture 

generation. The Json structure in {structure} is slight adjusted for the logical architecture:  

 {"meta": {"name": "DIAGRAM_NAME"},"content":{"blocks": [{"id": "L-01","name": "COMPONENT_NAME", "ref": 

["FUNCTION_ID"]},{"id": "L-02","name": "COMPONENT_NAME", "ref": ["FUNCTION_ID"]}],"connectors": 

[{"id": "C-01","source": "L-01","target": "L-02"}]}}. 

Finally, we generate the blocks and connectors with the same procedure as for the functional architecture. Here, we use 

the stereotype “Logical Block” for the elements in the diagram.  

4 Generation of Different Architectural Views of a RC Car 

 

Figure 4. Fraunhofer IEM autonomous RC Car 

In this updated study, we introduce a bespoke plugin for the Cameo System Modeler, demonstrated through a detailed 

case study of an autonomous remote-controlled car (RC Car) modeled on the MIT standard at a 1:10 scale. This case study 

integrates advanced components essential for autonomous driving, including a central computing unit (NVIDIA Jetson), 

a stereo camera system, a LIDAR system (Hokuyo UST-10LX), an accelerometer (Razor 9 DOF IMU), and an Electronic 

Speed Control. The MIT Race Car model is chosen for its practical application and evaluation of complex, real-world 

driving functionalities. The manageable number of components allows for an in-depth analysis of system interactions, 

bridging theoretical concepts with practical insights (Karaman et al., 2017). 

We generate various architectural views of the RC Car using the plugin workflow described in Section 3.3. These views 

undergo rigorous evaluation based on established guidelines and predefined criteria. A pivotal aspect of our study involves 

inviting experts to assess the AI-generated architectures through a structured survey, aiming to evaluate their practical 

applicability against traditional, expert-developed architectures. This methodological approach not only benchmarks the 

AI-generated system architectures but also sheds light on the potential benefits and challenges of embedding AI in systems 

modeling. Figure 4 shows our RC Car. It clearly shows the arrangement of the electronic components such as the central 

computing unit, camera system, LIDAR system, the accelerometer, and the electronic speed control. The Right view shows 

a side perspective that providing a view of lower layer and to see the batterie system of the Car.  

4.1 Importing Requirements to Cameo Systems Modeler & Tool Configuration 

Importing system requirements into the Cameo System Modeler represents the initial steps in the process of modeling 

various architectural views. System requirements are typically captured in requirement management tools such as 

codebeamer, DOORS, or in Excel and form the foundation for generating architectural views. These requirements must 

be imported using existing solutions like the ReqIF importer, to be able to use the plugin. It is essential to recognize that 

importing into Cameo could potentially create two sources of the same artifact. To ensure consistency, it is advisable to 

implement regular data synchronization between the system requirements imported into Cameo and those maintained in 

the original requirement management tool. For the gathering of the requirements, we organized internal interviews with 

the RaceCar users. Figure 5 illustrates the system requirements imported into Cameo. 
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Figure 5. System Requirements of the RC Car 

Proper tool configuration is necessary to create the architecture view. For our example, we use the standard ChatGPT-4 

without finetuning. The configuration starts with the "System description," where we entered "An autonomous Remote-

Control Car." All requirements from Figure 5 were selected, highlighting the importance of previous import steps. We 

adjusted the system complexity by selecting at least 10 components. A critical step is setting the temperature to 1, 

controlling the creativity and variability of AI modeling, directly influencing the generated architectural views. This setup 

is expected to produce comprehensive views that provide an initial idea and element of the system model. 

4.2 Generation of a Functional Architecture 

In this section, we generate a functional architecture from the imported system requirements. The architecture generation 

was initiated using the functional architecture prompt from section 3.3. To guide the accurate generation of the 

architectural view, additional information was provided to the language model. This is done using a separate JSON “rules” 

file. 

In our approach, we used guidelines to generate the functional architecture, interpreting six key points. First, the Race 

Car's primary purpose should be the main node of the hierarchy, aligning all underlying functions towards a common goal. 

Second, functions should be systematically decomposed into manageable sub-functions. Third, the number of sub-

functions should be kept manageable to avoid unnecessary complexity. Fourth, the nomenclature of elements should 

descriptively reflect the activity each function will undertake. Fifth, completeness is crucial, ensuring all necessary aspects 

of superior functions are covered by subordinate ones. Lastly, system interactions and interfaces should be considered, as 

a higher number increases complexity. Figure 6 illustrates the generated functional architecture. 

 

Figure 6. AI-Generated functional architecture 

The generated architecture contains a total of 10 elements. Following the 1st guideline, the main node corresponds to the 

primary purpose of the system. In our case, it is “Operate RC Car”. On the 2nd level, there are 4 sub-functions to be found: 

the Processing Unit, the Navigation System (fulfill requirement 9 and 10), the Power Unit (fulfill requirement 5, 6 and 7), 

and the Communication Unit (fulfill requirement 14).   
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Figure 7 shows the traceability between the requirements (see Figure 2) and the functional architecture (see Figure 3). The 

Processing Unit, for example, is responsible for calculating, decision-making, and executing driving commands. This unit 

meets requirements 11, 12, and 13, which are associated with the ECU. Under the Processing Unit, there are 4 sub-

functions: the Drive Mechanism (fulfill Requirement 3 and 4), Velocity Control (fulfill requirement 4), Servo Control 

(fulfill requirement 8). The Steering Control is assigned to both the Processing Unit and the Navigation System. The Power 

Unit has the Safety Mechanism on the 3rd level to meet requirement 7. Under the Communication Unit, no further function 

is subdivided. 

 

Figure 7. Traceability between requirement and functional architecture using processing unit as an example. 

The transition from this functional architecture to the logical architecture will be addressed in the following chapter, where 

we will see how these functional blocks translate into specific components to fulfill the operational needs of the 

autonomous RC Car. 

4.3 Generation of a Logical Architecture 

Following the functional architecture laid out in Chapter 4.2, we now continue with the generation of the logical 

architecture. This architecture is built upon the functional structure and includes logical elements that fulfill one or more 

functions. The architecture generation was initiated using the logical architecture prompt from section 3.3. 

Guidelines were also provided for the creation of the logical view in the “rules” file. We have adopted a total of 6 

guidelines. Firstly, we have the direct derivation of logical elements from the functions, where each logical element should 

realize at least one function. The second guideline is modularity, suggesting that the architecture should be partitioned so 

that the logical elements are clearly and definitively defined. This enhances the testability and reusability of the logical 

elements and allows for the development of clearly defined logical elements to be taken over externally. Next, we address 

the hierarchy and decomposition of the individual elements, which should follow a systematic breakdown, beginning with 

the overarching elements that capture the important system functions and accordingly subdividing these into subordinate 

elements. The fourth guideline relates to the depth of the hierarchy. The logical architecture should have 3 to 4 levels for 

our application to maintain clarity and manageability of the system. The manageability is additionally influenced by the 

interfaces in the system; hence this is adopted as the fifth guideline. Lastly, scalability and flexibility are established, 

ensuring that the architecture is adaptable to new or changed requirements or technology without extensive rework. Figure 

8 illustrates the generated logical architecture. 

 

Figure 8. AI-Generated Logical Architecture 

The generated architecture consists of 3 levels and contains 10 logical elements. The main node is the "autonomous RC 

Car" system. The 2nd level consists of 3 logical elements: an ECU, Wi-Fi Module, and Power Supply. In this case, the 

ECU serves as the processing unit of RC Car. As seen in Figure 6, the logical element is linked with the functional 

element Processing Unit. The ECU itself is comprised of 5 elements: Motor Controller, Steering Controller, Drive Train, 

Servo Motor, and Navigation Sensor. 
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Figure 9. Traceability between logical Elements and functional element using ECU as an example. 

The Motor Controller assumes control of the motor through velocity control and is hence linked with the function Velocity 

Control. The "Drive Train" is responsible for energy transmission and is associated with the function "Drive Mechanism." 

The Steering Controller, Servo Motor, and Navigation Sensor are each connected to the functions Steering Control, Servo 

Control, and Navigation System, respectively. Alongside the ECU on the 2nd level is the Power Supply, which represents 

the Power Unit. This includes the Battery Management System, where the Safety Mechanism is realized. Lastly, on the 

2nd level is the Wi-Fi Module, corresponding to the Communication Unit.  

4.4 Evaluation of the Generated Architectures 

The evaluation is an initial test to gather expert feedback. The paper's title shows that the solution and its implementation 

are not finished. The following subchapter explains how feedback is collected, which helps assess the designs. The 

evaluation uses a questionnaire completed by potential users. It should include a mix of quantitative and qualitative 

questions to gather diverse data. It should adhere to ethical standards such as informed consent and participant anonymity. 

The questionnaire should be distributed to a representative sample of users via accessible platforms to maximize response 

rates. Data analysis should employ statistical tools for quantitative responses and thematic analysis for qualitative 

feedback. Once the findings are in, they should be used to evaluate the software and identify improvements. (John W. 

Creswell & J. David Creswell, 2018) 

Our expert panel includes individuals with extensive experience in System Engineering, particularly in developing the 

IEM RC Car, a versatile system used as a demonstrative model. Our evaluation method uses a structured questionnaire 

with three response options per query, comprising ten inquiries grouped into four sections. The first two sections gather 

opinions on the functional and logical architectures, each with three questions. The third section includes two queries 

about the innovation of the generated components. Finally, we conduct a holistic assessment of the architectural 

perspectives and their added value, using the architectural drivers from the "rules". Criteria include assessing component 

suitability, coherence, complexity, traceability, added value, and innovation potential. Table 1 summarizes the expert 

opinions, listing evaluation criteria in the first column and the percentage of experts who believe each criterion is fully, 

partially, or not met in subsequent columns. 

Table 1. Expert evaluation result 

No. Evaluation Criterion Full Met Partially Met Not Met 

1 Components of the functional architecture 20,0% 40,0% 40,0% 

2 Complexity of the functional architecture 0,0% 60,0% 40,0% 

3 Traceability (requirement to functions)  20,0% 40,0% 40,0% 

4 Components of the logical architecture 0,0% 100,0% 0,0% 

5 Traceability (functions to logical elements) 20,0% 80,0% 0,0% 

6 Added value of the logical architecture 40,0% 20,0% 40,0% 

7 Innovation 20,0% 0,0% 80,0% 

8 Futureproofing 20,0 % 80,0 % 0 %  

9 Overall Architecture Assessment 0,0 % 60,0 % 40,0 % 

The ensuing discussion aims to elaborate on various aspects of the evaluation outcomes. Compared to the components of 

the logical architecture (Criterion No. 4), where 100% of the experts believe that most logical elements in the architecture 

have been identified and included, opinions on the functional architecture are divided (Criterion No. 1). 20% of experts 

believe that the architecture has fully generated suitable functions and sub-functions. Meanwhile, 40% each believe that 

the architecture lacks essential aspects (partially met) or even has significant deficiencies (not met). Moreover, there are 

duplicate affiliations in the architectural perspectives, such as with Navigation Sensors in the logical and steering control 

in the functional architecture. This could pose integration or accountability difficulties during development.   
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Regarding whether the logical architecture adds value (No. 6), expert opinions are also divided. Among those who voted 

"not met," some believe that the logical architecture largely reflects the functional structure or that some elements have 

been incorrectly incorporated, such as the Drive Train example, or are missing, such as sensors like LiDAR. In terms of 

Traceability (Criterion Nos. 3 and 5), 80% of experts believe this is not fully met. The degree of innovation (Criterion No. 

7) was rated as not met by 80%. This means that the generated elements were mainly known or expected. Regarding 

futureproofing with respect to emerging technologies, the majority rated it as partially met. This means that the architecture 

considers future technological developments to some extent but is still improvable. The final evaluation point in the table 

(Criterion No. 9) is the overall assessment of the architecture. 60% of experts consider it "good." This means there is good 

design quality, but some areas could be improved. The usefulness of the architecture was asked as the last question. It 

aims to understand how helpful such a generated architecture would be for the system architect (Table 2). 80% of experts 

agree that the architecture proposal is moderately helpful. This means that the architecture can be used as inspiration or a 

first draft. The proposed architectures are thus not directly implementable, yet they contain valuable ideas and concepts 

that can serve as a starting point for further consideration. 

Table 2. Utility Assessment of the architecture proposal 

Nr. Utility Very Helpful Moderate Helpful Little/No Helpful 

10 Architecture Proposal 20,0% 80,0% 0,0% 

5 Conclusion and Future Work 

5.1 Conclusion 

In this paper, we introduced a concept and implementation of system architecture creation tool. This tool was integrated 

as a plugin in the popular engineering tool Cameo Systems Modeler, which allows easy usage. This plugin allows hence 

a process to ease the construction of new system architectures by providing a first draft. A validation on the Fraunhofer 

RaceCar provides a proof of concept for the plugin workflow. The following expert evaluation could provide valuable 

insights for further improvement and underscore the relevance of the process. The proposed solution is limited and 

represents a rapidly developed initial solution, which is without a doubt not final nor flawless, but it highlights the potential 

that is attached to leveraging uprising technology of generative AI in engineering applications.  

5.2 Future Work 

The AI4Cameo plugin already covers some basic architecture generation but opens the possibility for many more 

extensions.  

Our objective is to refine the solution methodology by creating additional system views, such as sequence or activity 

diagrams, and improving the review process through tracelink reports that identify unlinked requirements. We aim to 

further improve the methodical enhancement of the solution by introducing a step-by-step approach with the large 

language model, which should improve the design reasoning. To ensure a higher trustworthiness we aim to improve the 

traceability, which is a crucial property. Especially in the engineering industry traceability is essential to ensure the safety 

and security of products. In technical terms, an intermediate step between the functional and logical architecture would 

provide more usability. Especially, a rerun button would allow for multiple specific architecture designs to choose from. 

Retrieval-augmented generation (RAG) or finetuning can contain additional information and examples to improve the 

understanding of MBSE for large language models.  
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