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Abstract: In this paper, an algebraic partitioning method is proposed to make a trade-off between sequential and 

concurrent iterations among coupled activities. First, a proposed binary variable matrix named Iteration Transition 

Matrix (ITM) is developed to decouple multiple interdependent activities into a number of individual pairs. The 

innovative aspect of the ITM variable is its application in an Integer Linear Programming (ILP) model to build the 

equations of constraints which represents the required iterations to accomplish coupled activities. This model contributes 

to estimate unknown number of sequential iterations between each pair utilizing a stationary Markov Chain (MC). These 

estimated numbers are assumed to be used in equation of constraints in the ILP model. Finally, after establishing the 

objective function, the final results of the ILP represent optimum numbers of concurrent and sequential iterations. At 

the end, the developed model is applied in an example of an anti-corrosion tape product development process. 

Keywords: iteration transition matrix, sequential iteration, concurrent iteration, coupled activities 

1 Introduction 

Product development process is an iterative improvement process that will be continued until reaching the expected results 

(Eppinger et al., 1994). There are three types of Independent, dependent and interdependent relationships among coupled 

design activities. To reduce the complexity of the product development projects (Steward, 1981) developed a tool model 

named Design Structure Matrix (DSM). DSM is capable of illustrating interdependency among design activities. 

Generally, design activities are categorized into three types of independent, dependent, and coupled activities (Eppinger 

and Browning, 2012). Among them, coupled activities increase the complexity (Browning and Ramasesh, 2007), 

(Hoedemaker et al., 1999). In addition, it is believed that coupled activities are the sources of increasing product 

development time by increasing the number of information exchange or iterations during accomplishing product 

development projects (Unger and Eppinger, 2011), (Browning, 2001), (Loch and Terwiesch,1998). Uncertainty among 

dependent activities is the main source to create interdependency relationships among activities (Levardy and Eppinger, 

2009), (Loch et al.,2001). The information uncertainty might affect the established relationships among product 

development activities (Khastehdel et al., 2018), (Khastehdel and Mansour, 2012) through receiving new information from 

upstream to downstream activities and vice versa. Thus, a trade-off between extending development time and reducing 

uncertainty should be considered (Srour et al, 2013). Similarly, iterations among coupled activities are classified into two 

different categories including sequential and overlapping iterations (Yassine and Dan, 2003). In sequential iterations, 

information transfer from one activity to the other one; however, overlapping iterations might create interdependency.  

(Yang et al.,2012) developed an overlapping method where there is dependency among activities. Also, (Yang et al., 2014) 

developed a simulation model to find the optimum degree of overlapping between sequence activities. However, these 

models did not consider the same issues when there is interdependency among activities. (Joglekar et al., 2001) developed 

a performance generation (PMG) model to optimize sequential, concurrent and overlapped strategies between two coupled 

design activities. However, it was not determined how the PMG works in face of multiple coupled activities. (Zhang et 

al., 2014) measured the degree of strength among coupled design activities in order to find the best sequence among them. 

Also, (Smith and Eppinger, 1997a) developed a Work Transition matrix (WTM) to measure the degree of dependency 

among coupled design activities to determine the convergence of iterations and optimize the sequence among coupled 

design activities. However, overlapping among coupled design activities was not considered. (Wang and Lin, 2008) 

developed a simulation-based model to find the optimum overlapping between product development activities using DSM. 

However, the information uncertainty parameter related to the iteration probability between coupled activities was not 

considered. (Yin et al., 2019) developed a model based on value analysis to optimize overlapping iterations; however, the 

constraints of resources and deadlines are not included. The main distinction of this research is including both sequential 

and concurrent iterations in an optimization process. It is assumed that measuring the number of sequential and concurrent 

iterations simultaneously result in determining the degree of overlapping between two coupled activities. In addition, the 

strength of interdependency among coupled activities is measured through estimating the length of sequential iterations 

among coupled activities using transition matrix. (Browning, 2015) classified a collection of research focused on 

decomposing coupled blocks.  For example, (Martínez et al., 2011) re-arranged row and columns of coupled activities in 

a DSM to reduce feedback and blocks including coupled activities to improve the project performance. (Ahmadi, et al., 

2001) developed an optimization model to reduce iterations using Markov chain. However, the transition between 

sequential and concurrent iterations is not included in the transition matrix. In this paper, the transition between sequential 

and concurrent iterations is taken into consideration using the ITM. (Eppinger et al., 1996) developed a model to consider 
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parallel and sequential iterations using a probability model to improve project performance. However, the constraints of 

resources and overlapping iterations are not considered. 

In this paper the complexity of the product development processes is reduced through a decomposition method to decouple 

interdependent activities.  In Fig. 1 concurrent and sequential iterations between three coupled activities are illustrated 

through an ITM which is a DSM with binary random variable in diagonal entries and probability of iterations in off-

diagonal cells. In addition, the ITM can be decomposed from higher dimension matrixes to the smaller ones. (Smith and 

Eppinger,1997b) developed a predictive model of sequential iteration using reward Markov Chain which is the source of 

initial idea to develop the ITM. However, it was assumed that only one task can be performed at a time and the total time 

of the coupled activities is equal to the sum of sequential iterations time. In the ITM, concurrent and sequential iterations 

among coupled activities is taken into consideration which is applied subsequently as the basis vectors to develop an ILP 

model to optimize the number of concurrent iterations. As an example, in the Figure1 three are three coupled activities 

decomposed to three pairs of coupled activities. The diagonal entry of (1,1) represents concurrent iteration as well as the 

entries of (1,0) and (0,1) illustrate sequential iterations.  

  

 

 

 

 

 

 

 

 

 

There are assumptions to use the ITM as is following: 

Assumption1- If the sum of the binary values is greater than 1 it shows concurrent iterations and if the sum of them is equal 

1 represents sequential iterations.  

Assumption2-The ITM can be decomposed to lower dimension matrixes according to the Figure 1. This feature is important 

to optimize iterations through an ILP model since the ITM is utilized as the basic vectors to constitutes equations of 

constraints in an ILP model. This feature will be described completely in the next section. 

Assumption 3- Each individual pair belongs to a specific ITM. 

Assumption4-Non- diagonal entries represent the repetition probabilities between two coupled activities. The Figure 2 

illustrates probability of iterations among three coupled activities with corresponding ITM’s which led to three pairs of 

coupled activities. 

 

 

 

 

 

 

 

 

 

 

Then the unknown number of sequential iterations (na and nb) between two coupled activities is estimated according to the 

repetition probability within a transition matrix illustrated in Figure 3.  

 

 

 

 

 

Figure 3. Illustrating the unknown numbers of sequential iterations 

Figure 1. Decoupling of three coupled activities to concurrent and sequential iterations. 

 

Figure 2 .Illustrating ITM’s for three coupled activities with probability of iterations. 
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it should be noted a concurrency option including reworking is taken into consideration during transition between 

decomposed activities. Each ordered pair of (Ai, Bj) in the Figure 3 represents one iteration which can involve sequential 

and concurrent iterations for being accomplished. The Equation 1 represents a sequential iteration and the second Equation 

include concurrent iteration with a possibility of reworking. 

ITM (Ai, Bj) = ITM (1,0) + ITM (0,1)                                                                (1) 

ITM (Ai, Bj) = ITM (1,1) + Pr(reworking). (ITM (1,0) + ITM (0,1))                (2) 

1-1 Defining the overlapping iterations 

The focus of this research is the sequential and concurrent iterations among coupled activities. However, including 

overlapping iterations through the ITM is explained in this section. But, these variables excluded from the optimization 

model of this paper in order to keep the model with linear programming conditions. Thus, including overlapping 

iterations remains for future works. The Equation 3 represents the relations among sequential, concurrent and 

overlapping iterations for two coupled activities in the ITM.   
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Assumption5-In this paper k=1 is assumed.                           

2 Estimating the unknown number of sequential iterations between two coupled activities. 

In this section na and nb illustrated in Fig.3 are estimated using MC. Many systems have the property that the past states 

independent of the future states and knowing the present state is enough. This property is called the Markov property, and 

systems having this property are called Markov chains (Hoel and Stone,1972). The Markov property can be defined 

precisely by the Equation4.   

P (Xn+1= xn+1 | X0 = x0, …, Xn = xn) = P (Xn+1= xn+1 | Xn = xn)                           (4)      

The conditional probability P (Xn+1= xn+1 | Xn = xn) is called the transition probability of the chain.    

Assumption6- In this study, it is assumed that the system has stationary transition probabilities that means the equation 3 

is independent of n.  To model the MC, each transition is representative of one iteration between design activities.  

Step1- Setting the transition matrix illustrated in the Figure 4 and the initiate probability conditions are according to the 

Equations of 5 and 6. 

𝑞1 + 𝑝2 = 1                                                             (5) 

𝑝1 + 𝑞2 = 1                                                             (6) 

 

 

 

P (X A, B) =p2   represents the transition probability from the activity A to the activity B.  

P (X B, A) =p1   represents the transition probability from the activity B to the activity A.  

P (X A, A) =q1   represents the transition probability from the activity A to B complementary (BC).  

P (X B, B) =q2   represents the transition probability from the activity B to A complementary (AC).  

Assumption7- AC and BC   represent the probability of closing sequential iterations.  

Figure 4. Transition probabilities between two coupled activities 
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Step 2- Estimating the unknown numbers of sequential iterations between A and B.  

The Figure 5 represent the calculations of probability and expected iterations within each sequence number of the activity 

A. The expected iterations for an activity is indicated in the Equation 7. 

Expected Iterations of A= (sequence number of iterations) × (probability of iterations of A)    (7) 

As well as, the Equations of (8,9), (10,11), (12,13) calculate the expected number of iterations within the sequence number 

of 3,5 and 7 respectively. 

P (X B, A, A) = P (X B, A). P (X A, A) = p2. q1                (8) 

E (X B, A, A) = 3. p2. q1                                                                 (9)  

P (X B, A, B, A, A) = P (X B, A). P (X A, B). P (X B, A). P (X A, A) = p2. p1. p2. q1 = p2
2. p1. q1       (10) 

E (X B, A, B, A, A) = 5. p2
2. p1. q1                                             (11) 

P (X B, A, B, A, B, A, A) = P (X B, A). P (X A, B). P (X B, A). P (X A, B). P (X B, A). P (X A, A) = p2. p1. p2. p1. p2q1 = p2
3. p1

2
. q1     (12) 

E (X B, A, B, A, B, A, A) = 7. p2
3. p1

2
. q1                                (13) 

Then, the Equation of 14 is founded to estimate the expected sequence number of iterations as is following: 

E (X B, A, …, Bn, An, A) = (2n+1). p2
n. p1

n-1
. q1             (14) 

Finally, the Equations of 15 and 16 are extracted to calculate the expected sequence number of activities of A and B 

respectively. 
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0≤q,p≤1                                                           (17) 

To solve the Equations of 15 or 16, it is assumed that p1=p2. 

Assumption8- p1=p2        

 With this limited assumption the Equation 15 is substituted by the Equation 18.  

E( x(A)) =1 + ∑(2n+1).p
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The method to solve the Equation18 is represented as is following: 
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Figure 5. Illustrating the sequence number of iterations with probability of iterations for two coupled activities. 
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The final answer is reached according to the Equation 20.  

The expected number of closing sequential iterations for the activities of A and B are according to the 21 and 22 Equations 

respectively. Finally, the Equation 23 determines the expected numbers of sequential iterations between two coupled 

activities.  
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1
.( ( 
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) + ( 

2p

(1-p2)
2
) )                (21) 

E( x(B))=1+q
2
.( ( 3p

(1-p2
) + ( 2p

(1-p2)
2
) )                 (22) 

Note1- It should be noted if p1=p2   then q1=q2   and the above equations is replaced by the Equation 23. 

E( x(AB))=E( x(A))+ E( x(B))= 2+2q
 
.( ( 3p

(1-p2)
) + ( 2p

(1-p2)
2
) )                              (23) 

Analyzing the Equation 23 is taken into consideration through an example in the next section.  

2-1 Estimating the length of sequential iterations among coupled activities through an example. 

 

 

 

 

 

 

 

 

 

 

 

The Figure 6 illustrates an example of stage-gate development process of an anti-corrosion tape product with following 

activities: Activity 1- Developing polyethylene tapes (the first Semi-finished product). Activity 2- Developing adhesive 

(the second Semi-finished product).  Activity 3- Testing results of activity 1. Activity 4- Testing results of activity 2. 

Activity 5- Developing primer and final product. Activity 6- Testing the final product. 

Pi, j- Represent repeat probability between two stages. 

Step1- Illustrating the process through DSM and Determining ITM’s. 

 

Figure.7. Identifying the ITM variables in the DSM 

According to the Figure 7 the expected number of sequential iterations among the five coupled activities of (A, B, C, D, 

F) is calculated through the Equation 24 in which four pairs of coupled activities including (A, C), (B, D), (A, F) and (B, 

F) are identified. 

M=E( x(AB))+E( x(BD))+E( x(AF))+E( x(BF))                                         (24) 

M is the expected length of sequential iterations for the four coupled activities. 

Step2- Establishing the transition matrix for the development process illustrated in Figure 8. The iteration probability 

values related to the (A, C) and (B, D) coupled activities extracted from the transition matrix illustrated in the Figure 9 

and Figure 10.  

Figure 6. Development process of an anti-corrosion tape product. 
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The Equation 25 represents the maximum sequential iterations between A and C coupled activities.  

E( x(AC))=2 ×(1+0.7×( ( 
3×0.3

(1-(0.3)
2
) + (

2×0.3

(1-(0.3)
2
)
2
) )= 2+ 1.4 ×( ( 

0.9

0.91
) + ( 

0.6

(0.91)
2
) )= 4.0003 ≅ 4       (25)   

 

The iteration probability values related to the B and D activities is determined according to the Figure 10. Also, the 

Equation 26 represents the maximum sequential iterations between B and D coupled activities.  

E( x(BD))=2 ×(1+0.6×( ( 
3×0.4

(1-(0.4)
2
) + (

2×0.4

(1-(0.4)
2
)
2
) )= 2 +1.2 ×( ( 

1.2
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) + ( 
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(0.84)
2
) )= 4.789 ≅ 5     (26)   

 

As well as, the iteration probability values related to the (A, F) and (B, F) coupled activities are illustrated according to 

Figure 11 and 12. The equation 27 represents the maximum sequential iterations between A and F activities. 

 
      

 

 

E( x(AF))=2 ×(1+0.7×( ( 
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2
) )= 4.0003 ≅ 4       (27)     

 

The equation 28 represents the maximum sequential iterations between B and F coupled activities.  

 

E( x(BF))=2 ×(1+0.8×( ( 
3×0.2

(1-(0.2)
2
) + (

2×0.2

(1-(0.2)
2
)
2
) )= 2 +1.6×( ( 

0.6

0.96
) + ( 

0.4

(0.96)
2
) )= 3.694 ≅ 4          (28)  

 

M=E( x(AC))+E( x(BD))+E( x(AF))+E( x(BF)) = 4+5+5+4=18                          

 
Note2- It should be noted that higher transition probability between two coupled activities results in higher length of 

sequential iterations which logically is reasonable illustrated in the Figure 13. The Equations 29 and 30 shows the 

sequential iterations between two coupled activities with an example of (p=0.8, q=0.2) and (p=0.9, q=0.1).  

 

E(x(ij) )=2 ×(1+0.2×( ( 
3×0.8
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2
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)
2
) )=  
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2
) ) = 6.93       (29)  

 

E(x(ij) )=2 ×(1+0.1×( ( 
3×0.9

(1-(0.9)
2
) + (

2×0.9

(1-(0.9)
2

)
2
) )=  

2 +0.2 ×( ( 
2.7

0.19
) + ( 

1.8

(0.19)
2
) ) = 14.81    (30)   

Figure 10. Illustrating iterations between B and D.        
Figure 8. Transition Matrix of the development process                                                                         

Fig. 12. Illustrating iterations between B and F. Fig. 11. Illustrating iterations between A and F.                                 

Figure 13. Illustrating the growth of iterations with increasing P. 

 

Figure 9. Illustrating iterations between A and C.        
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2-2 Developing the ITM basis vectors for the ILP 

The Figure 14 illustrates ITM variables including sequential iterations. The Equation 31 indicates ITM basis vector 

resulted from the columns in the Figure 14.   The Equations of 32 to 39 are the ITM’s representative for sequential iterations 

and the Equation from 40 to 43 represent concurrent iterations between coupled activities.              

 

 

 

 

 

 

 

 

 

  

ITM = (A1, C, B1, D, A2, F1, B2, F2)   (31)  

ITMA1 = (1,0,0,0,0,0,0,0)     (32)      ITMC = (0,1,0,0,0,0,0,0)       (33)     ITMB1 = (0,0,1,0,0,0,0,0)       (34) 

ITMD = (0,0,0,1,0,0,0,0)      (35)      ITMA2 = (0,0,0,0,1,0,0,0)      (36)     ITMF1 = (0,0,0,0,0,1,0,0)       (37) 

ITMB2 = (0,0,0,0,0,0,1,0)     (38)      ITMF2 = (0,0,0,0,0,0,0,1)      (39)     ITMA1, C = (1,1,0,0,0,0,0,0)    (40)    

ITMB1, D = (0,0,1,1,0,0,0,0)  (41)     ITMA2,F1 = (0,0,0,0,1,1,0,0)   (42)     ITMB2, F2 = (0,0,0,0,0,0,1,1)   (43)        

X S, XC variables represent sequential and concurrent iterations respectively. The Equations 44 and 45 represent the initial 

Equation of constraints of the ILP model which are substituted by the ITM vectors.   

AX≤B               (44)  

As. Xs + AC. (XC+ PR) ≤ (BA1, BC, BB1, BD, BA2, BF1, BB2, BF2)  (45) 

The Equation 46 calculates reworking of concurrent iterations in which three possible states could be occurred. The 

Equations of 47 to 50 represent the expected reworking related to the concurrent iterations. 

Rij=E (XR) = XR. PX= 1× Prii. (1- Prjj) +1× Prjj. (1- Prii)) + 2× Prii. Prjj                                  (46) 

R(A1,C)C=1×(P(x
A1A1

).(1-(P(x
CC

)+1×(P(x
CC

).(1-(P(x
A1A1

)+2×(P(x
A1A1

).(P(x
CC

) = 0.3   (47) 

 

R(B1, D)=   0.4     (48)    R(A2, F1)=   0.18+0.28+0.24= 0.70   (49)      R(B2, F2)=   0.24+0.24+0.32= 0.80   (50) 

 

The Equation 51 indicates the constraints of the ILP using the ITM basis vectors.  

ITMA1. XA1S+ ITMC. XCS+ ITMB1. XB1S+ ITMD. XDS+ ITMA2. XA2S+ ITMF1. XF1S+ ITMB2. XB2S+ ITMF2. XF2S+  

ITMA1 C. XA1C+ ITMB1, C. XC+ ITMA2, F1. XC+ ITMB2, F2. XC+ Pr (A1, C). XA1C + Pr (B1, C). XB1C + Pr (A2, F1). XA2F1 +  

Pr (B2, F2). XB2F2 ≤B 

(1,0,0,0,0,0,0,0). XA1+(0,1,0,0,0,0,0,0). XC+(0,0,1,0,0,0,0,0). XB1+(0,0,0,1,0,0,0,0). XD+ 

+(0,0,0,0,1,0,0,0). XA2+(0,0,0,0,0,1,0,0). XF1+(0,0,0,0,0,0,1,0). XB2+(0,0,0,0,0,0,0,1)XF2+ 

+(1,1,0,0,0,0,0,0). X(A1,C)+(0,0,1,1,0,0,0,0). X(B1,C)+ (0,0,0,0,1,1,0,0). X(A2,F1)+ 

+(0,0,0,0,0,0,1,1).X(B2,F2)+(1,1,0,0,0,0,0,0).X(A1,C).R(A1,C)
+(0,0,1,1,0,0,0,0).X(B1,C). R(B1,C)+ 

+(0,0,0,0,1,1,0,0). X(A2,F1).R(A2,F1)
+(0,0,0,0,0,0,1,1).X(B2,F2). R(B2,F2) ≤(2, 2, 3, 2,2, 2, 2,2)           (51) 

 

The Equations 52 to 59 is resulted from the Equation 51. 

 

XA1 + 1.3X(A1,C) ≤2        (52)               XC +  1.3X(A1, C) ≤2          (53)        XB1 +  1.4X(B1,D) ≤3      (54) 

XD +  1.4X(B1,D) ≤2        (55)                  XA2 +  1.7X(A2,F1) ≤2      (56)      XF1 + 1.7X(A2,F1) ≤2      (57) 

XB2 + 1.8X(B2,F2)≤2       (58)                     XF2 + 1.8X(B2, F2) ≤2    (59) 
                       
XA1, XC, XB1, XD, XA2, XF1, XB2, XF2, X(A1,C), X(B1,D), X(B2,F2), X(A2,F1) = 0,1      

 

The Equations 60 to 67 guarantees completing coupled activities either through sequential or concurrent iterations.  

XA1 + XC1 +  X(A1,C)  ≥ 1   (60)             XB1 + XB1 + X(B1, D)  ≥ 1  (61)          XA2 + XF1 +  X(A2,F1)  ≥ 1      (62) 

XA1 + XC1 +  X(B2,F2) ≥ 1  (63)               XA1 =  XC1         (64)                                XA2 =  XF1                              (65) 

XB1 =  XD           (66)                             XB2 =  XF2        (67) 

Figure 14. Illustrating ITM basis vectors 
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3 Developing the objective function   

In this section, decision variables and parameters are identified to determine the objective function. There are several 

parameters and decision variables that should be considered in the ILP model. The below objective function involves the 

required parameters and variables to optimize the number of sequential and concurrent iterations of the problem. 

Z=Min ∑ txis
.Xis+Lxijc

.X(ij)c  + u.( ∑ Rx(ij)c. (X(ij)c(1+ D(ij)C
)

n

i=1

)) 

n

i=0

                    j=1,2,3,....   (68)     

Xi- is the number of sequential iterations to complete the ith activity.  

Xij- is the number of concurrent iterations.  

Rij is explained in the previous section illustrating reworking of concurrent iterations. 

txi- is the required time to complete a sequential iteration.   

u- is the coefficient related to the information uncertainty of performing concurrent iterations. (u≥1) 

LXij-is the required time to complete a concurrent iteration. L is calculated according to the Equation 69. Also, Dij is the 

time difference two sequential iteration calculated according to the Equation 70. 

Lij = Max (ti, tj)    (69)        Dij =|ti- tI|    Dij ≥ 0          (70)                                       

The second part of the objective function indicated by the Equation 71 represents the undesirable element in which the 

growth of time difference (Dij) would result in increasing rework during concurrent iterations.  

∑ Rx(ij)c . (X(ij)c(1+ D(ij)C
)

n

i=1

  )    (71) 

3-1- Defining the input parameters and exploring the results 

Step1- the input parameters of the ILP model is illustrated in the Figure 15. It should be considered that L and D parameters 

are calculated according the 69 and 70 Equations and the reworking parameters (Rij) are estimated in advance. 

 

 

Step2- Establishing the objective Function indicated in the Equation 72. 

Z= Min  3XA1+4Xb1+3XA2+4XB2+7XC+5XD+6XF1+6XF2+8.5X(A1.C)+5.8X(B1.D)+8.8 X(A2,.F1)+8.4X(B2.F1) (72) 
 

Step3- solving the ILP using defined objective Function and Constraints in the previous section with U=1. 

The Figure 16 illustrates the optimal solution with sequential iterations equal to zero and all the concurrent iterations equal 

to one. 

 

 

 

 

 

X(A1.C),X(B1.D), X(A2,.F1),X(B2.F1)=1     ,    XA1,Xb1,XA2,XB2,XC,XD,XF1,XF2=0   

Step4- Sensitivity analysis of the ILP model with equal times for sequential iterations and increasing the uncertainty 

coefficient with U=2.  

Z= Min  1XA1+1Xb1+1XA2+1XB2+1XC+1XD+1XF1+1XF2+2.(1.4X(A1.C)+1.7X(B1.D)+1.8 X(A2,.F1)+8.4X(B2.F1)) 

Figure 15. Illustrating the sequential and concurrent iterations parameters 

Figure 16. Illustrating the optimal solution with u=1 
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X(A1.C) = 1,X(B1.D), X(A2,.F1),X(B2.F1)=0    ,    XA1,Xb1 = 0, XA2,XB2 = 1, XC,XD = 0, XF1,XF2=1 

The Figure 17 Illustrates that increasing uncertainty for concurrent iterations results in increasing the number of sequential 

iterations from zero to 4. 

4 Conclusion 

This study developed a partitioned model in order to reduce the complexity of coupled activities in the product 

development process. The first contribution of this study is decomposing of multiple coupled activities through a proposed 

binary DSM variable named ITM. The ITM was developed in order to establish the basis vectors of equations to solve an 

ILP optimization model. The ILP model was utilized to optimize the number of sequential and concurrent iterations in 

different discrete times. The second contribution is that the constraints of the required cycle iteration to accomplish the 

multiple coupled activities was included in to the ILP model using Markov Chain and ITM. Thus, the model enables 

designers to cope with coupled activities to reduce a product development process cycle-time to keep up with promised 

deadline. Especially when there are multiple alternatives of new products, the proposed model can assist product 

development managers to select those products which fall within project milestones for development. 
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