
 32. DfX-Symposium 2021

© 2021 die Autoren | DOI: https://doi.org/10.35199/dfx2021.01

A data model for linking testbed and field test data

Christopher Sauer 1*, Benjamin Schleich 1 , Sandro Wartzack 1

1 Lehrstuhl für Konstruktionstechnik (KTmfk), Friedrich-Alexander-Universität Erlangen-Nürnberg

* Corresponding author:
Christopher Sauer
Lehrstuhl für Konstruktionstechnik, FAU Erlangen-Nürnberg
Martensstraße 9
91058 Erlangen
Telefon: +49 9131/8227985
Mail: sauer@mfk.fau.de

Abstract

With the help of data-driven methods such as machine learning,
the development of the current product generation can be
supported and improved through the early use of data from
previous products and product generations. For example,
machine learning can be used to predict later product behaviour
in field tests from testbed data. This can significantly shorten the
development time and save expensive field tests. To implement
this data provision for the development processes, uniform data
models enable the use of data-driven methods and are of central
importance. This paper presents a data model using the example
of a testbed for electric vehicle transmissions. Here, potentials
for a later data-driven prediction of the product behaviour in the
field test for the optimisation of the existing development are
shown.

Keywords

Graph databases, machine learning, digital engineering

2

1. Motivation

With the help of data-driven methods such as machine learning, the development of the

current product generation can be supported and improved through the early use of data from

previous products and product generations. For example, machine learning can be used to

predict later product behaviour in field tests from testbed data. This can significantly shorten

the development time and save expensive field tests. In this context, digital engineering is

trying to provide methods to enable holistic horizontal and vertical data usage across the entire

product development process [1]. To implement this data provision for the development

processes, uniform data models enable the use of data-driven methods and are of central

importance [2]. This paper presents a possible data model using the example of a testbed for

electric vehicle transmissions. Here, potentials for a later data-driven prediction of the product

behaviour in the field test for the optimisation of the existing development are shown.

2. Research Problem and Question

Unstructured data exists in different authoring tools and formats. For example, the various

Computer-Aided-X, X can stand for Design, Engineering, Manufacturing and more (CAx),

generator systems usually store data in their own file format. These are often not directly

usable for product development and above all cannot be used for data-driven methods such

as the prediction of product behaviour through machine learning. Data models are required so

that the data contained can nevertheless be accessed and a connection for data-driven

methods is possible. This leads to the following research question, among others: How can

existing data sources be structured to provide data for the prediction of product behaviour so

that these are made available to product development for the prediction of subsequent product

behaviour?

3. Related work

3.1. Relational and Graph Databases

Most common management systems for product data handle data hierarchically and

statically and in a project-based manner [3]. Data is stored project-wise and very similar to how

one would store CAD data since CAD models show the same hierarchical kind of buildup.

Therefore, most product data management happens via relational database management

systems (RDBMS) such as Microsoft or Oracle [4]. Inside RDBMS the data is stored in tables

and the linkage between different tables happens via so-called keys. Besides accessing the

data via queries using the Structured Query Language (SQL), data can be manipulated via so-

called transactions. Transactions inside a relational database need to provide four key

elements.

▪ Atomicity – a transaction is only completed in full or not.

▪ Consistency – after the transaction, the previously defined consistency terms for the

database need to be fulfilled.

▪ Isolation – simultaneous transactions lead to the same results as single transactions.

▪ Durability – Databases states can only be changed via transactions.

Those four key elements define the term ACID for databases. However, these key elements

of RDBMS lead to some limitations [5] stated below.

3

▪ Inadequate representation of arbitrary data – this means the strict convention only to

store tabular data, which is not feasible for every type of usage.

▪ Semantical overdescription – exemplifies that a relational database must store

instances and relations inside different tables. This leads to unnecessary overhead,

especially for heavily intertwined data.

▪ Weak support for recursive queries – queries that need to access data inside the

databases recursively take a very long time for this action.

▪ Law of homogeneity – the data must always be and stay in the form of the table it is

stored in. Every datum added to a table also needs to hold all categories defined by the

table.

These limitations show that RDBMS might not be feasible for usage with arbitrary and

heavily heterogenic data as it could be the case for machine learning tasks and the usage for

building machine learning models such as image recognition tasks, etc. Graph databases

however provide the following advantages [6]: Data is modelled naturally; this means the easier

formulation of instances and relationships via the usage of graphs and graph structure to mark

relationships and objects. This can be very useful, especially for inexperienced product

developers as they do not need sophisticated product data management tools and can

prototype their data model on a whiteboard. Moreover, when querying the whole data, the

structure can be exposed to the user, so that one can easily see existing relations and other

objects which interact with the one selected. Lastly, graph theory a subarea of mathematics

can be used to analyze the data stored inside graph databases, for example, to search for the

shortest connection between two objects.

3.2. Data-driven Methods

Machine learning (ML) is a data-driven method that allows application inside the product

development process [4, 1]. As mentioned above, ML can for example be used to predict later

product behaviour in field tests from testbed data. This can significantly shorten the

development time and save expensive field tests. The most common tasks for ML can be

grouped into classification and regression tasks. For both tasks, a variety of different

mathematical prediction models exists. For this contribution, we want to highlight two of them,

which can be applied to regression problems. The focus lies on regression problems because

we later want to show the prediction of resulting product behaviour from product features

defined by product developers. Machine learning can be divided into three categories, as

shown in the following figure 1: Supervised learning, unsupervised learning, and reinforcement

learning [7].

Figure 1: Machine Learning (ML) and its categories, with two Supervised Learning methods highlighted.

4

Using ML inside product development focuses mainly on supervised learning, to be more

specific regression tasks. For these tasks, one can start from data that describes a given input

or feature set, so for example the product features defined by product developers and

attributed labels such as resulting product characteristics. ML mainly relies for regressional

supervised learning on numerical data in the form of n-dimensional arrays to first train and later

predict via ML models. One ML basic model we want to highlight is a simple linear regression

model with a varying polynomial degree. This model can learn very basic functional

connections between the above-specified input and output data. Moreover, one more

sophisticated model can be decision tree regressors (DTR). DTRs are piecewise-defined tree

models consisting of many simple linear or polynomial functions as their leaves [8]. DTRs can

also be called ensemble models.

4. Methods and Use Case

First, we analyzed possible data sources in testbed and field test development and their

respective processes. The data sources were then subdivided according to their specific

occurrence of the data, this means the creation of three main categories.

▪ System elements – these are the elements of the testbed system, e.g. parts or

assemblies of the testbed.

▪ Knowledge elements – elements that can be in relation to the system elements and

hold or store knowledge such as simulation models and more.

▪ Field test elements – these are the elements that can represent data and datasets

from field tests.

To give more detail for the possible elements we start with the system elements. System

elements store information about the manufacturer, the parts and assemblies of the testbed,

dimensions and build volumes and structural information about the whole testbed. For

example, the hierarchical structure of the testbed, just like in a CAD assembly.

Knowledge elements can store data in the form of simulation input and output files

(simulation results). Moreover, trained ML models can also be stored inside knowledge

elements. For example, these models can predict testbed behaviour. Furthermore, knowledge

elements can store data from the testbed and structural or metadata about the knowledge

elements.

Finally, field test elements can hold field data, which can be data or datasets from a carried-

out field test. This data can also be streamed from the field via Internet-of-Things

technologies [9].

The following table 1 below holds a detailed overview of the assignments, types, and

feasible database systems for the different types of data. The linkage between knowledge

elements from testbed data and field test data is key in training our ML models for later

prediction of product behaviour from field tests. When using a graph database this linkage can

happen arbitrarily and does not have to follow the law of homogeneity of RDBMS.

5

Table 1: Assignments, types, and feasible database systems of different data sources

Data source Type (Data type) Feasible database system

System element: Manufacturer Text (String) Relational

System element: Parts and
Assemblies

Proprietary CAD data Graph

System element: Dimensions Numerical (float) Relational

System element: Build volume Numerical (float) / CAD data Relational / Graph

System element: Structural
information

Tabular (Object) Graph

Knowledge element: Simulation
data

Proprietary Simulation tool data Graph

Knowledge element: (Trained)
Machine Learning models

JSON / h5 exports Graph

Knowledge element: Testbed
data

Numerical (float) Relational

Field test element: Field test data Numerical (float) Relational

As stated in table 1, most of the data sources mentioned above are numerical data which

can be represented via tables or arrays. Both are suitable for using relational database

management systems. However, the heterogeneity and the variety of the different data

sources needs a more flexible approach to data modelling. So the law of homogeneity for

RDBMS stands in the way of implementing a RDBMS only approach. However, existing

RDBMS databases can be added as knowledge or field test elements inside the graph

database. For our contribution, we want to start from a greenfield approach.

One further point is that graph databases can also store arbitrary data or files inside their

nodes such as CAD models and proprietary simulation data. Putting it all together, figure 2

shows the general concept for the data model that emerged from the preliminary

considerations. One important aspect of the data model is the ML models which can link field

tests and knowledge elements. This enables the training and later the prediction of field

behaviour based on the testbed data (M inside figure 2).

Figure 2: Concept of a data model for a testbed and connected ML models (M)

Starting from figure 2 and with the theoretical considerations in mind the three main

categories were populated with exemplary objects in the following way: Starting with the

mechanical structure the transmission, the mechanics, the electronics and the measurement

and sensors were implemented as nodes of the graph database (see figure 3 a)). Then the

knowledge elements such as requirements, properties, measurement data, measurement

principles and measurements were implemented as more nodes (see figure 3 b)). Lastly, the

6

field test elements were implemented as nodes such as rounds per minute (RPM), vibrations,

or temperature data (see figure 3 c)). Figure 3 puts the use case implementation data into

perspective.

Figure 3: The populated graph database with use case data

For implementing graph databases multiple solutions exist, one can for example use the

very popular graph database tool called Neo4J [10]. It is worth noting that when using Neo4J

deeper knowledge of the Cypher language is required. Via using Cypher the data inside the

graph database is stored and queried. For our use case, we chose a simpler implementation

of a graph database in the programming language Python.

When accessing a node or an object that is in the graph database, in most cases a

Javascript Object Notation (JSON) file is presented to the user. JSON is a modern and widely

used data format and very similar to extensible markup language files (XML) [11]. JSON files

have two advantages, which make them very useful for our use case. On the one hand, it is

human and machine-readable and on the other hand, it allows simple serialization and storage

of Python arrays. As Python is the most preferred programming language for scientific

computing and machine learning this comes in handy [12]. By using JSON as data format it is

possible to store arbitrary Python arrays and matrices inside a single file with additional

information such as presented in the following listing 1. So for example one can directly

interchange Python array data by using JSON files.

Listing 1: Exemplary JSON file

7

Listing 1 also shows the key-value like the structure of the JSON file. One can see that the

file is human readable and not in a binary format. For our example use case we want to access

the property stored within k “ ” exemplary

measurement values from the testbed. This needs to be done to predict later product behaviour

from the list of measurement values. For the use case, a simple four-step process was

implemented in Python using the open-source machine learning library scikit-learn [13]. The

process is depicted in the following figure 4.

Figure 4: Exemplary process

Our exemplary process starts with the data extraction from the graph database, in this case,

we use simple graph database implementation based on Python. The data extraction happens

via Python scripts directly from the graph database. The result of the first step is some sort of

JSON file, as the one depicted above in listing 1. The extracted JSON file is then processed in

step two, the data preprocessing step, in this step the desired data from keys inside the JSON

files are extracted. As stated above we want to extract the array stored inside the key

“ ” The array stored inside the key is then converted to the necessary

Python representation. So the result for step two is then a Python object or Python array which

can be used for model training and evaluation. In step three the array or object is then fed to

the model training step. In this step, the models mentioned in section two get trained on the

“ ”-Array. For our use case, we used the scikit-learn library to enable

model training and later save the trained model to disk and store it inside the graph database

again via a Python script. The trained model then gets carried over to step four, in this last step

the model is then evaluated according to quality measures. In our case, we mainly used two

error measures, the mean absolute error (MAE) and the mean squared error (MSE). What the

Machine Learning model is then able to predict is for example resulting RPMs on the testbed

during a test run. The whole data flow inside our exemplary process steps is depicted in

figure 5.

Figure 5: Data flow inside the exemplary process steps

 ra database

 ata e tra tion ata re ro esing odel training al ation

 ata e tra tion ata re ro esing odel training al ation

8

This is only the first step for the application of Machine Learning, as we want to extend the

prediction not only on testbed or field test data, but we also want to try to predict the field

behaviour of our exemplary product based on the testbed behaviour. For this case, we want

to access knowledge elements as well as field test elements from our graph database. This is

exemplified by the model (M) inside figure 2. For this case, the data extraction needs to be

extended to implement a two-way approach. One way is the extraction of knowledge elements

and data from the testbed, the second way being the extraction of field data from field test

elements inside the graph database.

5. Results and Discussion

For the use case in the test stand, system elements of the respective testbed were identified

as possible data sources; these are primarily the physical elements of each testbed. In

addition, knowledge elements were identified that can be added to the system elements. These

can be, for example, testbed data. Field test elements complete the trio considered. These can

contain, for example, field test data. Later, an integration of Internet-of-Things data sources is

also conceivable for this [9]. It was stated that a human and machine-readable format such as

JSON is used to store arbitrary data inside the graph database, as it is the basic format for the

data inside most graph databases. The graph databases can then be accessed from the

exemplary process and the data stored inside can be used to train ML models, which can

predict field test or testbed behaviour, such as resulting RPMs. Using error measures such as

MAE or RMSE can then support model quality analysis.

The article uses this implementation to describe the procedure and the connection to a data-

driven method. In addition, the semantic linking of data within the graph database maps the

relationships and links between the individual elements contained [14]. For product

development, the uniform data model, and the access to all available data result in early

optimisation potentials. In this way, the first step towards a possible "Design for Data-driven

Methods" approach can also be recognised, to use all data at an early stage in the

development of new products and, for example, to draw on them for the prediction of the

resulting product behaviour.

 “How can existing data sources be structured

to provide data for the prediction of product behaviour so that these are made available to

product development for the prediction of subsequent product behaviour?” rces

can be accessed via the graph database which holds the necessary data from the different

sources and by using the exemplary use case process we can use the data to build and train

models to predict product behaviour and more.

One main discussion point of the presented solution is the need for the implementation of

the graph database. Small and medium-sized enterprises (SMEs) often lack the manpower to

focus on data-driven methods and solutions using them to improve their products. If SMEs

want to focus on this area sufficient manpower needs to be established on the other hand

product data management systems (PDM) can be implemented in the enterprise via the help

of engineering service providers. PDM systems can be a first step towards implementing data-

driven methods, as they store product data and can be accessed from tailored applications

inside the enterprise.

The second point is data acquisition and availability, to dive into data-driven methods there

simply needs to be data. This is one major concern for every enterprise thinking about data-

driven methods. As the presented data model is flexible to storing datasets and streaming data

from IoT solutions this can be one viable strategy. Implementing IoT sensors and

measurements to track the field test data and testbeds in the specific SME. To extend this idea

even further there is a possible approach to exploit use phase data with the help of graph

databases [15].

9

On the implementation side, one might ask, why we need graph databases for this data

model. It is precisely because of the strong heterogeneity that the approaches from the field of

relational databases are rather unsuitable for later use in data-driven methods. Mostly because

of the law of homogeneity and the strict laws and semantical overdescription RDBMS are not

feasible for this use case.

6. Outlook

To further extend the concept and ideas presented in this contribution we want to focus on

three main areas in the future. On the data side, we want to extend the basic models with more

use case data and objects, to store more information inside the presented graph database. On

the methods side, we want to focus on adding more data-driven methods to the possible use

cases, such as unsupervised learning tasks and more supervised learning models. The third

area of focus is the potential use cases for data-driven methods along the product development

process. In this contribution we only showed one very basic approach to implementing and

training a ML model for prediction, this needs to be extended.

On the organisational side, the presented methods need to be put together to give especially

SMEs a valuable starting point for their dive into data-driven methods and solutions for their

ML problems. This should remove barriers to entry for the SMEs, however, the necessary

manpower needs to be distributed for the application of data-driven methods.

Acknowledgements

 k “ O @B - Bavarian research association for

customized digital engineering for ' “ is “B

 (B ”

Special thanks are directed to the Bayerische Forschungsstiftung (BFS) for financial support

of the whole research project. Furthermore, N. Sprogies from FZG at TUM Munich, Germany

is thanked for the fruitful discussions and input about testbeds and their specific requirements.

10

References

[1] Gerschütz, Benjamin; Sauer, Christopher; Kormann, Andreas; et al.: Towards Customized Digital
Engineering: Herausforderungen und Potentiale bei der Anpassung von Digital Engineering Methoden für
den Produktentwicklungsprozess. In: SSP 2021. Stuttgart, 2021

[2] Maack, Stefan; Bertovic, Marija; Radtke, Martin; et al.: Deutsche Normungsroadmap künstliche Intelligenz.
In: opus4.kobv.de (2020)

[3] Conrad, Jan; Deubel, Till; Köhler, Christian; Wanke, Sören; Weber, Christian: Comparison of Knowledge
Representation in PDM and by Sematic Networks. In: Proceedings of the 16th International Conference on
Engineering Design (ICED) 2007, Paris. Design Society (2007).
https://www.designsociety.org/publication/25624/

[4] Vajna, Sandor; Weber, Christian; Zeman, Klaus; Hehenberger, Peter; Gerhard, Detlef; Wartzack, Sandro:
CAx für Ingenieure. 3. Auflage. Berlin/Heidelberg: Springer-Verlag (2018).
https://doi.org/10.1007/978-3-662-54624-6

[5] W “ ” Berlin/Boston: Walter de Gruyter GmbH. (2015) ISBN: 978-
3110441406

[6] Angles, Renzo; Gutierrez, Claudio: Survey of graph database models. In: ACM Computing Surveys (CSUR),
40 (1) (2008). https://doi.org/10.1145/1322432.1322433

[7] Witten, Ian; Frank, Eibe; Hall, Mark; Pal, Christopher. Data Mining: Practical machine learning tools and
techniques. (2016). ISBN: 9780128043578.

[8] Breiman, Lucas; Friedman, Julian; Olshen, Richard; Stone, Clark. Classification and Regression Trees.
Wadsworth, Belmont, CA, 1984.

[9] Van Quyet, Nguyen; Thi Xuan Lac, Bui; Van Hau, Nguyen: An Efficient Graph Modeling Approach For
Storing And Analyzing Heterogeneous IOT Data. In: JST. Vol. 27 (2020), p. 2127.

[10] ; B J “G G B
 G J O B” DATA. (2018) S. 373-380.

[11] Peng, Dunlu; Cao, Lidong; Xu, Wenjie. Using JSON for data exchanging in web service applications. Journal
of Computational Information Systems, 2011, 7. Jg., Nr. 16, S. 5883-5890.

[12] k ; J ; “ Main Developments and
 ”
4 Apr. 2020, p. 193, (2020) https://doi.org/10.3390/info11040193

[13] Pedregosa, Fabian; Varoquaux, Gaël; Gramfort, Alexandre; Michel, Vincent; Thirion, Bertrand; Grisel, Olivier;
Blondel, Mathieu; Prettenhofer, Peter; et al.: Scikit-learn: Machine Learning in Python. In: Journal of Machine
Learning Research vol. 12 (2011), Nr. 85, pp. 2825–2830

[14] Pokorný, Jaroslav: Graph Databases: Their Power and Limitations. In: Computer Information Systems and
Industrial Management (2015), pp. 58–69 — ISBN 9783319243689

[15] Hollauer, Christoph; Shalumov, Boris; Wilberg, Julian; Omer, Mayada: Graph Databases For Exploiting Use
Phase Data In Product-Service-System Development: A Methodology To Support Implementation. In:
Proceedings of the DESIGN 2018 15th International Design Conference (2018) — ISBN 9789537738594.
https://doi.org/10.21278/idc.2018.0399.

https://www.designsociety.org/publication/25624/
https://doi.org/10.1007/978-3-662-54624-6
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.3390/info11040193
https://doi.org/10.21278/idc.2018.0399

