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Abstract 

Multi-Objective Topology Optimization is a tool for finding low-
weight solutions using a discretized geometry of several 
objective functions. In this contribution, the coupling of heat 
conduction and elastostatics is covered using the global criteria 
method. For the comparison of the different objectives and 
objective distributions typically the single target optimized 
solutions are selected as normalization criteria [1], [2]. The use 
of these optimized results requires additional calculation effort, 
so that this work uses the objective distribution of full material 
properties instead. For the normalization, the objective 
distributions will be standardized, and quantile normalized. The 
normalization strategies are compared to each other by the 
number of iterations and the resulting objective value. 
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1. Introduction 

Topology optimization is typically used for suitable design suggestions for objectives like 
mean compliance, mean temperature or model analysis. Such optimization often leads to 
organic-like shapes which require flexible manufacturing like additive manufacturing. 
Depending on the manufacturing process or the material, some adjustments such as the 
design of support structures, or the change of shape based on criteria like overhang angles 
and wall thicknesses are necessary [3], [4]. By ignoring such conditions, the geometry might 
collapse during production due to its own weight. In addition to the geometrical criteria, thermal 
loads during the production can lead to thermal stress cracks, significant changes in the 
resulting shape and altering mechanical properties [3]. Therefore, the component must 
withstand mechanical and thermal loads during production.  

The transfer of mechanical loads as well as the dissipation of heat is required in many other 
applications such as the support and cooling of a battery [5] or a heat exchanger [6]. In most 
cases, the function of cooling and the transfer of mechanical loads are considered separately 
[5], [6], so that suboptimal solutions can appear. In a battery for example, the heat exchanger 
does not cover any static loads and only a small amount of heat is dissipated via the respective 
bearing [5]. In order to find suitable design proposals, multi-objective optimization could solve 
such problems [7]–[10]. In our current research, passive cooling including static mechanical 
loads is used for a multi-objective topology optimization. We cover both objectives as 
independent systems without any correlation, so that the temperature and displacement should 
have no effect on each other. This requirement is satisfied if only small displacements and 
temperature gradients occur. The combination should result in pareto optimal solutions, so that 
the areas for cooling and load transfer support each other cooperatively.  

2. State of the Art 

The use of topology optimization is applied in many different areas, such as elastostatic [7], 
heat conduction [8]–[11], fluid mechanics [8] or dynamics [7], [9]. The optimization of several 
objective functions can be combined using various approaches such as the weighed sum 
method [7]–[10], neural networks [12] , the global criteria method [7] or the normal constraint 
method [13]. Therefore different type of physical objectives can be combined like a) the total 
pressure energy loss with the mean temperature [8], b) the mean compliance with the  mean 
temperature [10], or the mean compliance with the first natural eigenmode [7]. Additionally to 
the different types of physical objectives manufacturing costs and assembly costs can also be 
taken into account [4] by defining cost functions depending on the shape of the resulting 
geometry. 

In our approach we combine heat conduction and elastostatic similar to [10]. As primary 
goal, [10] minimizes the thermo-mechanical loads by optimizing the head conduction, so that 
the temperature is distributed equally (Small gradient of temperatures). In contrast to [10], we 
cover heat dissipation and elastostatic independently, so that the heat dissipation and 
sustaining mechanical load condition are supporting each other cooperatively. Additionally, our 
approach should rather increase the heat dissipation than reduce the thermo-mechanical 
loads. 

One main challenge comparing different objectives is finding suitable weight factors [7], 
[13]. Therefore, [7] uses a min-max feature scaling by selecting the maximum and minimum 
value of the current sensitivity number of each target. Despite to [7], we use statistical 
properties for the normalization on the objective distribution, so that the different distribution 
functions can be compared to each other. In [1] and [2], the optima of each single objective 
are used directly for scaling the objective distributions, which requires additional optimization 
steps before iterating with the global criteria. In contrast to [1] and [2], we do not require single 
target optimization for the normalization. To sum our contribution, we want to investigate the 
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following two questions. Can we use the global criteria method for covering heat dissipation 
and elastostatic? Can we find suitable weight factors by using the standard and quantile 
normalization on the objective distribution with full material properties? 

3. Multi-Objective Topology Optimization with statistical Normalization 

The global criteria method is selected as optimization strategy. If available, the respective 
optima of the single targets can be used  for the global  criteria method, so that the distance 
between the current solution and the reference optima is used as a metric [7]. These reference 
optima’s are typically calculated by single target optimizations [1], [2]. Additionally, the 
individual distributions of the objectives are quantile and standard normalized, so that different 
magnitudes of the mean temperature and the mean compliance are covered in the same scale. 
The objective distribution is built up by the contribution of each element to the objective value. 
In standard normalization, the standard deviation of the objective distribution is used for 
scaling, while quantile normalization equalizes the quantiles of several distributions. The 
individual distribution functions are then combined using the global criteria method.  

The following figure shows the multi-target optimization and normalization. In this work, 
different load cases for heat conduction and elastostatics are first created. Then, the load 
cases are evaluated using the finite element method. Based on the system response, the 
individual sensitivities are calculated and normalized using the respective objective function. 
Then the individual normalized sensitivities are combined using the global criteria method by 
the corresponding chosen weights. To avoid a checkerboard pattern, a gaussian filter from 
digital image processing with a standard deviation of 0,5 is selected. Finally, the element 
stiffness matrices are adjusted using the design variables.  

 

Figure 1: Weighed sum optimization of the two objectives of 1) and 2) with different weight factors using median of 
quantile normalized distribution 

3.1. Single Objective Optimization 

To obtain the sensitivities, the gradient of the objective function with respect to the design 
variable must be determined. In topology optimization, the minimization of an objective function 
such as the mean compliance or mean temperature can be selected with   
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where 𝑲𝑲 describes the overall stiffness matrix, 𝒙𝒙 the values of the node degrees of 

freedom such as displacement values or temperature values, 𝒌𝒌𝑗𝑗 the element stiffness matrix 
and 𝒙𝒙𝑗𝑗the associated displacements on the individual element. So, the value of the objective 
can be determined by using the overall stiffness matrix or summing up the contributions of 
each element independently. The objective distribution is a vector which covers the 
independent contributions of each element with  
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The design variables 𝝆𝝆 = [𝜌𝜌1, … . ,𝜌𝜌𝑘𝑘]  are used to change the properties of the stiffness 

matrix, so that a selected ratio of the volume is sorted in an optimal configuration. 
Additionally, the design variables are restricted between 0 and 1, which represents no, in-
between and full material. To cover these restrictions, the iterative method of moving 
asymptotes can be chosen. The sensitivity of (1) decides at which areas the material is 
added and removed. Therefore, equation (1) must be differentiated by using the design 
variable with  
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To find suitable expressions, the different parts of equation (3) can be replaced by the linear 

system of the finite element analysis and a chosen material interpolation of the material matrix 
using the design variable. By the differentiation of the linear system 𝑲𝑲𝑲𝑲 = 𝒇𝒇 with 
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two expressions of equation (3) can be replaced. By inserting equation (4) and (5) in (3) 

equation (3) can be reduced to  
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If the design variable should have no influence on the boundary conditions and loads, the 

equation of (7) can be simplified to 
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Therefore, in equation (8) only one expression is missing for an explicit equation. For the 

optimization problem, the individual element stiffness matrices 𝒌𝒌𝑗𝑗 are adapted using the design 
variables 𝝆𝝆. A function 𝑔𝑔(𝜌𝜌𝑖𝑖) can be added to each element stiffness matrix with full material 
properties 𝒌𝒌𝟎𝟎, so that the resulting element stiffnes matrix is scaled by 
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Now we can use several different distribution functions depending on the design variable 

for 𝑔𝑔. If the element stiffness matrix is now explicitly scaled via SIMP model [14] with   
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Based on these sensitivity values, the design variables can now be adjusted via the method 

of moving asymptotes in such a way, that the volume ratio restriction and the range of the 
design variable can be satisfied, while distributing the material in the proper regions.  

3.2. Multi objective optimization 

Additionally, expression (11) is required for the multi objective criteria. When choosing multi 
objective criteria, the objective of (1) must be changed. In the following, we combine the load 
cases by using the global criteria method and a ratio form of the global criteria method. The 
global criteria method can be defined as a distance metric [1], [2] with  
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where 𝑤𝑤𝑗𝑗 describes the weight and 𝛱𝛱𝑗𝑗 the objective of the 𝑗𝑗th loadcase. The parameter 𝑝𝑝 

defines the norm of the metric for the different objectives, so that for the special case 𝑝𝑝 = 1 the 
global criteria is reduced to the weighed sum method [7] with 
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Additionally, the global criteria itself can be scaled by using a reference design 𝛱𝛱𝑗𝑗∗ [7] with  

the ratio global criteria as   
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(Referenz Design mehr info) For the sensitivity, the differentiation of equation (14) is 

required. The differentiation of (14) leads to 
 

𝜕𝜕𝛱𝛱
𝜕𝜕𝜌𝜌𝑖𝑖

=
1
𝑝𝑝
��𝑤𝑤𝑗𝑗 �

𝛱𝛱𝑗𝑗(𝝆𝝆)
𝛱𝛱𝑗𝑗∗

− 1�
𝑝𝑝𝑘𝑘

𝑗𝑗=1

�

1
𝑝𝑝−1

��
𝑝𝑝𝑤𝑤𝑗𝑗
𝛱𝛱𝑗𝑗∗

�
𝛱𝛱𝑗𝑗(𝝆𝝆)
𝛱𝛱𝑗𝑗∗

− 1�
𝑝𝑝−1𝑘𝑘

𝑗𝑗=1

𝜕𝜕𝛱𝛱𝑗𝑗(𝝆𝝆)
𝜕𝜕𝜌𝜌𝑖𝑖

�. 

 

 
 
(15) 

With that equation we can now use several approximations of 𝛱𝛱𝑗𝑗∗. Therefore, we can use 
several normalization strategies so that the objective 𝛱𝛱𝑗𝑗(𝝆𝝆) is scaled by a reasonable reference 
design 𝛱𝛱𝑗𝑗∗. 

3.3. Normalization for the Global Criteria Method 

Finding suitable reference designs 𝛱𝛱𝑗𝑗∗ in equation (15) or weight factors in equation (12) is 
not straight forward and leads to additional investigations (optimizations, normalizations, 
assumptions) [1], [2]. Therefore, we use the contribution of each element to the objective value 
with full material properties, approximating the reference design. In topology optimization the 
full material solution covers the optimal solution of the minimization of mean compliance and 
mean temperature if the ratio of volume is one, so that there is no material distribution. So, for 
a volume ratio of one we can directly calculate the reference design 𝛱𝛱𝑗𝑗∗. In our approach we 
use that reference design as an estimation for the normalization of other volume ratios as well, 
so that we do not need additional optimizations steps. For the normalization of equation (14), 
we first use the objective value and the standard deviation of the contribution of each element. 
Secondly, we use quantile normalization, so that all statistical properties are shared between 
the objective distribution in 𝛱𝛱𝑗𝑗

𝑞𝑞,∗ and 𝛱𝛱𝑗𝑗
𝑞𝑞,0. Then, we use the standard deviation of the shared 

distribution for the normalization, so that the normalization depends on the distribution of all 
objectives.  

The following figure covers the different steps of the quantile normalization of [15]. At first, 
the ordering of the original distributions is stored (Marked with colour). Then, each distribution 
is sorted according to their value. The distributions are combined to averaging the 
corresponding sorted values. The resulting shared distribution is used as the reference 
distribution, so that the averaged values are sorted back to the original positions. The statistical 
properties of the two distribution functions are now identical. Only the assignment to the 
individual design variables is different.  

 

Figure 2: Concept of Quantile Normalisation of an example with different distributions 
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Despite the example in figure 2, we first normalize the distribution of each objective with the 
standard deviation. Otherwise the impact of the shape of the objective distribution with the 
highest value the shared distribution would be huge, while the influence of other objective 
distributions could vanish. After the quantile normalization, we use that standard deviation for 
scaling the distribution back to the origin magnitude. The function in figure 2 shows the 
alignment of the two distribution functions via a common distribution. This common distribution 
can now serve for the normalization. The resulting quantile normalized distributions are stored 
in a vector 𝝅𝝅𝑗𝑗

𝑞𝑞 with 
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𝑞𝑞 𝑇𝑇𝒌𝒌1,𝑗𝑗
𝑞𝑞 𝒙𝒙1,𝑗𝑗

𝑞𝑞  covers the objective value of element 1 of the 𝑗𝑗th objective. The 
chosen approximation methods of this contribution are summarized in table 1. Method a) 
covers the reference case with the optimization of each criteria separately. Method b) uses the 
objective value with full material properties scaling the corresponding objective. Method c) 
uses the standard deviation of the distribution of the objective values with full material 
properties. Method d) uses the standard deviation of the quantile normalized function. Method 
e) uses the standard deviation of the quantile normalized function of the current objective 
distribution. Therefore, the weight factors are changing during each iteration dynamically. 

Table 1: Weight strategies for the global criteria method 
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d) Global Criteria 
Method Quantile 
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For the comparison of the normalization of table 2 with the global criteria method, we require 

different metrics. As test criteria we use the weighed sum method summing up the ratios with  
 

𝛱𝛱𝑔𝑔 =  𝑤𝑤1 �
𝛱𝛱1
𝛱𝛱1∗
� + 𝑤𝑤2 �

𝛱𝛱2
𝛱𝛱1∗
�, 

 
(17) 

 
and the independent ratios of the single objectives 
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𝛱𝛱1𝑟𝑟 =  
𝛱𝛱1
𝛱𝛱1∗

;   𝛱𝛱2𝑟𝑟 =  
𝛱𝛱2
𝛱𝛱2∗

. (18) 

 
Equation (17), (18) serves as the reference criteria on the comparison of the different 

methods. These criteria are used also for exponents larger than one. 

4. Discussion 

The experiment is divided into two scenarios. First, the different exponents of the Global 
Criteria are compared by using the methods of table 1 and different weight factors by the metric 
of (16). Second, the most promising methods are used for a visual comparison by choosing 
different load cases and weight factors. For each use case we calculate the metrices (17), (18) 
for comparison. 

4.1. Variation of the weight, exponent and method of case 1 

The individual methods from Table 1 are compared using load case 1 under different 
weights and metric exponents by the criteria of (17). The linear elasto static load case is 
weighed by 𝑤𝑤1 while the heat conduction case is weighed with 1 −𝑤𝑤1. Method a) represents 
the reference solution that is considered the optimum solution. The methods whose metrics 
only differ within a tolerance 0,1 from method a) are marked in the table in green.  
  

Table 2: Comparison of the global criteria on different normalization strategies 

Method 
Weight 
𝑤𝑤1 

Weighted Sum (Static) 𝛱𝛱𝑔𝑔 Iterations 

𝑝𝑝 = 1 𝑝𝑝 = 2 𝑝𝑝 = 2 𝑝𝑝 = 4 

a)  

0,25 1,509 1,508 1,522 1,522 400 

0,5 1,568 1,564 1,564 1,562 400 

0,75 1,522 1,526 1,532 1,535 400 

b)  

0,25 1,513 1,515 1,521 1,529 200 

0,5 1,568 1,568 1,568 1,565 200 

0,75 1,523 1,525 1,530 1,534 200 

c)  

0,25 1,651 2,036 2,276 2,544 200 

0,5 1,790 1,978 2,292 2,591 200 

0,75 1,635 1,934 1,987 2,039 200 

d)  

0,25 1,651 2,035 2,274 2,541 200 

0,5 1,789 1,977 2,289 2,588 200 

0,75 1,635 1,934 1,986 2,038 200 

e)  

0,25 1,509 1,514 1,514 1,532 200 

0,5 1,577 1,603 1,650 144,075 200 

0,75 1,595 1,659 2568,528 39,908 200 

 

Comparable results to a) can be recorded using methods b) and e) for load case 1 for a 
metric exponent of one. If the penalty exponent increases to 4, method e) is not converging to 
reasonable values. In the following, method b) and e) will be compared visually and compared 
by the individual ratios of (18) and the global criterion of (17) using several load cases and 
various weighting factors. The metric exponent will be set to one. 
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4.2. Variation of the weight factors on case 1, case 2 and case 3  

In the following, the individual load cases are tested based on the selected normalization b) 
and e) using further load cases and different weighting factors. For each load case, the global 
criterion with p=1 and the individual ratios of the optima are also given. The lowest values are 
marked in green, blue, orange for the respective load case 1, 2 and 3 for each weight factor. 
The results choosing weight factors of 𝑤𝑤1 = 1,0 and 𝑤𝑤1 = 0,0 cover the results of the single 
target optimizations. 

Table 3: Variation of the number of elements and load cases with median quantile normalization of weighed sum 

Method 
𝑤𝑤1 = 1,0 𝑤𝑤1 = 0,8 𝑤𝑤1 = 0,6 𝑤𝑤1 = 0,4 𝑤𝑤1 = 0,2 𝑤𝑤1 = 0,0 

𝛱𝛱1𝑟𝑟 𝛱𝛱2𝑟𝑟 𝛱𝛱𝑔𝑔 𝛱𝛱1𝑟𝑟 𝛱𝛱2𝑟𝑟 𝛱𝛱𝑔𝑔 𝛱𝛱1𝑟𝑟 𝛱𝛱2𝑟𝑟 𝛱𝛱𝑔𝑔 𝛱𝛱1𝑟𝑟 𝛱𝛱2𝑟𝑟 𝛱𝛱𝑔𝑔 𝛱𝛱1𝑟𝑟 𝛱𝛱2𝑟𝑟 𝛱𝛱𝑔𝑔 𝛱𝛱1𝑟𝑟 𝛱𝛱2𝑟𝑟 𝛱𝛱𝑔𝑔 

Case 1: 
b)       

1,00 62,0 1,00 1,35 2,12 1,50 1,50 1,67 1,57 1,67 1,48 1,56 2,12 1,33 1,49 125 1,00 1,00 

Case 2: 
b)       

1,00 3,48 1,00 1,13 1,94 1,29 1,21 1,65 1,38 1,37 1,40 1,39 1,65 1,27 1,35 86,1 1,00 1,00 

Case 3: 
b)       

1,00 5,38 1,00 1,11 1,59 1,21 1,28 1,40 1,33 1,34 1,35 1,34 1,72 1,22 1,32 115 1,00 1,00 

Case 1: 
e)       

1,00 62,0 1,00 1,16 3,17 1,56 1,43 1,82 1,59 1,68 1,47 1,56 2,46 1,24 1,48 125 1,00 1,00 

Case 2: 
e)       

1,00 3,48 1,00 1,09 2,18 1,31 1,17 1,74 1,40 1,37 1,40 1,39 1,83 1,22 1,34 86,0 1,00 1,00 

Case 3: 
e)       

1,00 5,38 1,00 1,06 1,85 1,22 1,18 1,51 1,31 1,41 1,31 1,35 2,24 1,12 1,35 115 1,00 1,00 

 
The first evaluation showed that weighting using the objective distribution with full material 

properties is sufficient and can lower the computation time. The individual static normalization 
strategies show a suitable utilization, so that a determination of the individual optima is not 
necessary. Both methods show suitable results for a coupling of heat conduction and elasto-
statics. Since the magnitudes of the global criterion are similar, both methods can be used. 
However, because quantile normalization requires additional effort for the normalization, 
method b) via the sum of the individual contributions of the respective element is more suitable. 

 
So, for further investigations this work can be extended to covering several loadcases for 

the elastostatic and heat conduction case. Therefore, the global criteria must be adapted, 
because the elastostatic cases are not independent to each other. Additionally, the objective 
type can be extended using fluid mechanics [8], natural vibration [7] or cost functions for 
manufacturing and assembly costs [4]. 
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5. Summary 

The use of multi-target optimization for heat conduction and elastostatics shows cooperately 
results where for example branches for heat conduction are created at the load-bearing 
elements. In order to perform a multi-objective optimization using the Global Criteria Method, 
a normalization strategy is necessary. The normalization allows the individual objective 
functions to be compared to each other. A suitable normalization can be realized based on the 
individual optimum of the respective objective function, whereby optimization steps are 
necessary. To avoid this additional effort, a normalization using a result with full material 
properties is chosen in this contribution. Based on the resulting objective distribution function, 
a normalization using the standard deviation and a quantile normalization is applied. The 
results show similar orders of magnitude as the variant of single optimizations, without 
additional optimization steps. This approach can be extended in further investigations using 
manufacturing restrictions and other type of physical objectives. 
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