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Abstract 

Can a product that reads the user's mind behave more efficiently and eventually train the user to 

conserve? Here, as a first step to answering this big question, we present a design method for telepathic 

products applied to the case study of a kitchen faucet. The case study is used to illustrate the different 

steps of the design method: (A) Build cognitive empathy and define cognitive styles; (B) Define design 

requirements, articulate variables that will control performance, understand limitations and design 

physical product; (C) Design the machine learning algorithm, inputs, and outputs; and (D) Integration 

and refinement. This work-in-progress report highlights the intricacies of applying adaptive machine-

learning behavior to physical products performance in the "real world" rather than to a website or device 

such as a smart phone. Interesting findings include that automatic response, typically associated with 

websites and phones, is not possible with plumbing as water cannot be instantly at the right temperature; 

and that cognitive styles indeed manifest in dish washing observations, with distinctly different styles 

in terms of patience, temperature sensitivity, and laziness. 
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1 INTRODUCTION 

This paper presents a design method for morphing the physical behaviour of products based on mental 

behaviour of users, applying the method to a faucet design case study with the motivation of reducing 

water use. The new approach rests at the intersection of user behaviour, product physicality, and artificial 

intelligence. Smart products, such as the Nest thermostat (Nest, 2016) may learn about a user’s 

preferences, but they do not know how the user thinks. While such products are able to predict what a 

user may want over time, their accuracy is limited by the fact that they assume that all users have the 

same underlying manner of interacting with the world. This paper presents insights on how people use 

products differently due to different "cognitive styles," and this can possible save water. The paper 

reports on the development of the design method and implementation of the case study, both still in-

progress. 

The design method uses machine learning (ML) algorithms to guide faucet response to user behaviour. 

This approach is based on past success in the field of marketing research, where such an ML algorithm 

served-up website advertisements based on a viewer's cognitive style, or behavioural-binning. When the 

ads were "morphed" to match behaviour style, click-through on advertisements increased by 245% over 

traditional ads (Urban et al., 2014). Cookies that collected link-clicks on other pages provided the data 

used for the morphing behaviour. Applying information about the user learned elsewhere (via cookies, 

in this case) to tailor a target design interaction is a new approach to affordance design. 

The design vision, explored only in a faucet design here, is a “telepathic” home water system where all 

tap outlets (kitchen, vanities, shower, bath) have empathy for how its users think. The faucet anticipates 

their needs and performance preferences (see Figure 1). For the impulsive but picky five-year-old, it 

stays on longer to encourage a thorough hand washing, while waiting until the water is the perfect 

temperature before coming to full flow. For the busy parent with free but dirty hands, it will know to 

immediately turn on at full force to allow for quick hand washing, even if the water is still cold. The 

goal is to provide appropriate flow, temperature, and on/off behaviour for dish-cleaning, vegetable-

rinsing, hand-washing, and pot-filling without user input. Over time, the behaviour of the water system 

trains user behaviour towards conservation. 

 

Figure 1. An example of how a telepathic faucet might work 

2 RELATED WORK 

Water conservation, user behaviour, and design affordances: This paper is inspired by the work of 

Srivastava and Shu (2013), who studied Old Mennonite lead users to rethink how water interactions at 

home could be designed to encourage conservation. Additionally, these authors created a faucet 

experiment that involved a washing exercise to understand how people used water. Through analysis of 

the lead users and the faucet experiment, the authors concluded that discretizing water in measurable 

units would probably help people use less water at home. Their paper also provides an excellent review 
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of affordances, or different ways of interacting with a product. It discusses pro-environmental behaviour 

and existing approaches for changing user behaviours to be more pro-environmental. For the sake of 

brevity, these excellent literature reviews will not be repeated here. 

Cognitive Styles: The way people think influences how they interact with the world around them, 

including how they interact with products. People have different styles for processing information and 

interacting, broadly termed cognitive style. Some common classifications of these styles are 

visual/verbal and analytical/instinctive or holistic (Riding and Rayner, 1998). While recent work has 

claimed that using cognitive styles to tailor learning approaches is ineffectual, the idea of styles has 

proven useful elsewhere. Researchers such as Nesbitt (2004) have found partial cultural explanations 

for cognitive styles. Novak and Hoffman (2009) found cognitive style classification to be task-

dependent, meaning people call-up different cognitive styles for different tasks. The research at-hand 

combines cognitive style and task to tailor product behaviour. Typically, when cognitive styles are 

discussed in the context of design, it is within the framework of inclusive or universal design. Universal 

design (Story et al., 1998), asserts that designers should strive to design a product such that the largest 

number of people can use it, for example, making straightforward design improvements for handicap 

accessibility or illiteracy. Within the design world of hard goods, this approach leads to designs that 

have affordances (Maier and Fadel, 2009) such that use is inclusive and adaptable. But the goal of 

universal design is distinct from the proposed research, as it strives to reach a single design configuration 

to be used by all. Here, the single design adapts or morphs into different modes to match interaction 

style, which are hypothesized to be driven by different cognitive styles and tasks.  

3 DESIGN METHOD 

Our design method is described in Figure 2. The first part, Part A – Build cognitive empathy, define 

cognitive styles, involves understanding users and the task they are performing to uncover related 

cognitive attributes. Users are observed, surveyed, and interviewed. Part B – Define design 

requirements, articulate variables that will control performance, understand limitations, design 

product describes that the designer must understand the limitations of the product performance – not 

all aspects of performance are real-time adaptable. Using information from Part A, the designer can 

define how the product will be controlled, using what variables. In Part C – Design ML algorithm, 

inputs, outputs, the designer will choose an appropriate ML algorithm for the design problem, and 

define the inputs to the algorithm, how users will be grouped by their behaviours, and how product 

performance will change over time. Once all components of the design are defined, they will be 

integrated and tested with users and subsequently refined in Part D – Integration and refinement. 

 

Figure 2. A general method to design a resource-sensitive product that morphs its behaviour 
to users' cognitive styles 
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4 CASE STUDY 

Faucets represent 19% of total water usage in a household, as shown in Figure 3 (DeOreo et al., 2011), 

yet have seen limited innovation that mainly focuses on convenience. Automatic faucets were introduced 

for hygiene and convenience reasons, but researchers found that they use more water than regular faucets 

(Gauler and Koeller, 2010). Designing faucets for water conservation remains an open area for 

innovation.  

 

Figure 3. Average water usage in a household (Aquacraft, 2016) 

4.1 Design Part A: Build Cognitive Empathy with Faucet Users 

The design method requires the assumption that different cognitive styles result in different faucet-use-

styles. Exploring this assumption for faucets requires understanding the cognitive attributes that govern 

faucet use behaviours (Figure 2A). Although there are a number of different interactions with kitchen 

sinks, washing dishes is the most complex and water-intensive.  This is the focus of the empathy-

building observations.  

4.1.1 Dishwashing Observations 

In order to build empathy with people using a kitchen sink, we observed fifteen people washing dishes 

on regular household kitchen faucets (not our prototype). In order to cover a diverse sample set, 

participants represented a wide age range (19-50 years of age), encompassing both genders, multiple 

geographies (USA and India), varying dishwashing experience (0 to 10+ years), and varying familiarity 

with the faucet/sink used. All participants were provided one spoon, fork, bowl, plate and pot to wash, 

using dishwashing soap and an optional scrubber. A few participants washed unsoiled dishes, i.e. dishes 

that were not visibly dirty. For the others, the dishes and utensils were deliberately soiled with a sticky 

paste. We observed duration of entire wash time, periods of water on/off, and user activity at each stage 

of washing, as shown in Figure 4. 

After washing observations, participants explained why they made certain decision choices during the 

dishwashing process, such as, “why did you choose the hot water setting to unsoil the dishes?” or “why 

did you use your hands instead of the scrubber for the plate?” This set of questions complemented 

general questions regarding such as “how long have you been washing dishes?” or “how much do you 

care about water conservation?”  

4.1.2 Observation Analysis 

The observations served to categorize dishwashing activity into four stages—Preparation, Unsoiling, 

Soaping, and Rinsing. All 15 participants in the experiment completed each of these stages, either in 

series or parallel. Preparation represents the user briefly wetting their hands and dishes, as well as 

soaping the scrubber. Unsoiling represents the removal of stains from the dishes using hands or a 

scrubber. In some cases, participants combined unsoiling with the Soaping stage, in which soap is spread 

on the dish. Rinsing uses water to remove the soap and any remaining dirt. 

Figure 4 represents these different stages. Water use varied by stage and participant. All participants 

turned the faucet on in the preparation and rinsing stages. However, water use in the unsoiling and 

soaping stages depended on the participant. For approximately equally soiled dishes, the dishwashing 

time ranged from 3 minutes to 5.5 minutes. 

Rinsing and soaping together accounted for 50% or more of the dishwashing duration, while preparation 

was typically 5-10% and unsoiling (when applicable) was 20-30%. Another observation was that in the 

latter dishwashing stages, the participant's hands were primarily in contact with the dishes, and we noted 

less adjustment to temperature and flow of the faucet, suggesting that having a precise temperature was 

important for hand contact but not necessarily for dish contact. 
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Figure 4. Data collected from the dishwashing experiment. The four stages of dishwashing 
are listed at the top. Participant information is on the left. Bar length represents duration of 

each stage 

During the interviews, a few common themes emerged that guided participants' explanations of their 

behaviours; patience, sensitivity to temperature, resource conservation and laziness.  

Participants suggested that their patience, or impatience, was directly proportional to faucet flow rate. 

For example, participant #3 explained that she increased the faucet flow rate to speed unsoiling and 

rinsing. Sensitivity to temperature represents the pickiness of a user, narrowing the band of preferred 

water temperatures, despite the fact that hotter water helps unsoil and rinse dishes better. Participant #5 

said that she turned off the water in the middle stages of dishwashing since her water heater was not 

working and the she did not want to come into contact with the cold water. Also, when users mentioned 

that they cared about resource conservation, they typically used a slower flow rate and lower 

temperature. For example, participant numbers 1, 4 and 7 deliberately reduced the faucet flow and 

temperature in order to conserve water and energy.  

Lastly, the interviews suggested laziness as a metric for number of adjustments to the faucet. For 

example, participant number 3 stated that they left the water running during all dishwashing stages since 

they were too “lazy to turn it off.” However, participant number 7 mentioned that they wanted to be 

meticulous about the dishwashing process and used water only where necessary. While we had initially 

hypothesized that dishwashing experience would be a factor that affected a participant’s faucet settings, 

the collected data did not provide any conclusions in this regard. 

4.1.3 Define case-specific cognitive styles 

Of the four cognitive attributes described in the last section, laziness was not included as one of the 

parameters to assess cognitive style. This was because the designed faucet was made to incorporate user 

adjustments and would do a better job catering to specific user adjustment needs automatically by 

recording the changes.  

Therefore, this experiment uncovered cognitive style parameters to bin users’ faucet behaviours based 

on three scores — their impatience, temperature sensitivity and empathy for the environment. Figure 5 

summarizes our hypotheses on how these parameters affect flow rate and temperature preferences. For 

a group of users with similar scores on these three parameters, the combination of these parameters 

would manifest itself as a region of preferred flow rates and temperatures in the Figure 5 plot. 
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While our research applies these learnings to a kitchen faucet in the short-term, it is interesting to note 

that these parameters can actually guide water usage behaviour on any product in the household, such 

as a shower, or hand washing sink. Thus, these insights may have larger implications on sustainability 

in the household. 

Lastly, a broader observation is that one does not need to study many users in order to begin uncovering 

governing cognitive parameters that impact their use of a product. This research studied fifteen 

participants from two cultures and seems sufficient to create useful bins for the ML algorithm. 

 

Figure 5. Observed correlation between temperature / flow rate and cognitive style 
parameters. The arrows represent the correlation with flow rate and/or temperature  

4.2 Design Part B: Define the design requirements, understand physical limitations 

This section discusses the design process, build, and operation of the case study faucet prototype. 

Designing and building the faucet required modifying an existing faucet and plumbing system so that it 

could be paired with an ML algorithm. This section first describes the design requirements used to build 

the product, then explains how the faucet works and finally, examines the mapping between faucet valve 

openings to the range of water temperatures and flow rates that the faucet can provide (physical 

limitations). 

4.2.1 Design requirements 

The faucet includes functional, aesthetic and convenience-related requirements.  

Functional: temperature and flow must be controlled electronically to enable ML algorithms to 

automate faucet performance. A large range of flow rates and temperatures allow for a variety of use-

cases, including hand washing and dishwashing. "Instant-heating" is important so that the faucet is not 

judged as malfunctioning when in automatic mode—if the user needs to wait for hot water, they may 

think the algorithm is not working. Manually adjustable temperature and flow, on top of electronic ML 

algorithm-offered temperature and flow, allow the algorithm to gather user feedback on optimal 

performance and refine its prediction of user preferences.  

Aesthetic: An appearance as similar as possible to a regular household faucet provides familiarity to 

users. During testing of the prototype faucet, we desire that user behaviour be as realistic as possible. 

Convenience: A free-standing and mobile unit for testing in the lab and in homes. Must be operated 

without hook-up to drain. Electronics and sensors must be attached to water-resistant areas. 

4.2.2 Design Description 

Figure 6 shows an image of the completed and operational prototype faucet, without sensors. A number 

of off-the-shelf items were purchased, assembled and customized to meet the design requirements. A 

laundry sink cabinet was attached to a Delta Vessona 2-handle kitchen faucet. A deep laundry sink and 

a tall faucet were chosen so that the product could be used for dish washing as well as hand washing. A 

plastic enclosure was built to cover the electronics under the faucet knobs. Furniture casters were 

installed at the bottom of the cabinet for mobility. Figure 6 also shows a simplified schematic of the 

faucet. The water supply line entering the laboratory branches into two, with one branch being heated 
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by an instant water heater. Both branches flow through valves before entering the sink. The valves have 

inserts for probes, where the inserted type-K thermocouples read the water temperature entering the sink 

through both the cold and hot lines. At the top of the faucet, a gear train connects a servo motor and 

knob valve on each side. When the servo motor rotates, the faucet knob opens to an angle prescribed by 

the servo motor, and scales through the gear train. The servo motor mechanism provides the initial flow 

rate and temperature for the user. For manually adjustability, two potentiometers are used as fake knobs. 

As the user rotates a potentiometer knob, the Arduino communicates this to the servo motor, which 

opens or closes the knob valve corresponding to the adjustment. The Arduino is powered externally by 

a 12V wall wart. 

Note that the design of the system of sensors that will determine the task being performed and the 

specific user performing the task is still to be addressed. 

 

 

 Figure 6. Image (left) of the prototype faucet. Schematic (right) of the faucet’s components 

4.2.3 Physical limitations 

One of our design requirements was to have full electronic control of the flow rate and temperature 

provided to a faucet user. In order to accomplish this, it was necessary to calibrate our faucet, i.e. map 

the angle of servo motor angle opening to the flow and temperature output.   

 

Figure 7. Measured output temperature and flow rate mapped to angles opened on the 
servo motors connected to the faucet knobs/valves 
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For this mapping, the hot and cold servo motors were opened to different angles (ℎ and 𝑐 respectively) 

to measure the temperature, 𝑇 and flow rate output, 𝑓. Temperature was measured using a thermocouple 

probe placed at the faucet outlet. Flow rate was measured by measuring the volume of water output over 

a given time. Surface plots through the observed points were made through MATLAB and show the 

mapping in Figure 7. The corresponding equations are shown below. Thus, we were able to understand 

what temperature and flow the user was being provided through the faucet at any angles on the faucet 

knobs, thereby providing full electronic control.  

𝑇(ℎ, 𝑐) =
𝐾(

ℎ𝑚𝑖𝑛
ℎ

−1)+𝑇𝐻−𝑇𝑆

(𝐴𝑓−ℎ)2 𝑐2 +
2[𝐾(

ℎ𝑚𝑖𝑛
ℎ

−1)+𝑇𝐻−𝑇𝑆]

(𝐴𝑓+ℎ)
𝑐 + [𝐾 (

ℎ𝑚𝑖𝑛

ℎ
− 1) + 𝑇𝐻 − 𝑇𝑆], (1) 

       with  𝐾 =
(𝑇𝐻−44˚𝐶)∙180˚

180˚−ℎ𝑚𝑖𝑛
, when ℎ > ℎ𝑚𝑖𝑛 and 𝑐 ≤ 𝐴𝑓 − ℎ,  

𝑇(ℎ, 𝑐) = 𝑇𝐶 when ℎ ≤ ℎ𝑚𝑖𝑛, and  

𝑇(ℎ, 𝑐) = 𝑇𝑆 when 𝑐 ≥ 𝐴𝑓 − ℎ.   

Here, 𝑇𝐶 = Temperature of the cold supply line = 26°C, 𝑇𝐻 = Maximum temperature attainable in faucet 

= 52°C, 𝑇𝑆 = Temperature at maximum flow = 42°C, ℎ𝑚𝑖𝑛 = Angle of hot valve at which heater starts 

working = 90°, and 𝐴𝑓  = Sum of angles where maximum flow is achieved = 225°. 

𝑓(ℎ, 𝑐) = 0.8 ∙ 𝑓𝑚𝑎𝑥 ∙
(ℎ+𝑐)

180˚
 when ℎ + 𝑐 ≤ 225˚, and (2) 

𝑓(ℎ, 𝑐) = 𝑓𝑚𝑎𝑥 when ℎ + 𝑐 > 225˚.  

Here, 𝑓𝑚𝑎𝑥 = Maximum flow rate attainable in faucet = 100ml/s. 

4.3 Design Part C: Design ML algorithm, inputs, outputs 

In part B of our design method, we described the three internal cognitive attributes that govern user 

faucet behaviour. These attributes provide information for our faucet prototype to initialize faucet 

settings for new users based on their personality type. In Part C of the method, we propose to collect a 

user’s quantified scores on impatience, sensitivity and empathy. The method for this collection is not 

yet determined, though it could be through a survey (see Figure 8). An unsupervised learning clustering 

algorithm would then cluster these users into cognitive bins. An example would be to use k-means 

clustering, where {𝑥(1), … , 𝑥(𝑚)} is a training set where 𝑥(𝑖) ∈ ℝ3 where each 𝑥(𝑖) is a vector containing 

a user’s scores on the cognitive parameters. A k-means clustering method would minimize the below 

distortion function, where µ represents a cluster centroid (Ng, 2016). 

𝐽(𝑐, µ) =  ∑ ||𝑥(𝑖) − µ𝑐(𝑖)||2𝑚
𝑖=1  (3)  

A more accurate initialization will be conducted through pilot study, where a set of users is provided a 

variety of flow rates and temperatures conducted for a variety of at-sink tasks, here we focus on 

dishwashing as an example. At each setting provided to the user, we would gauge their “happiness” with 

the setting, i.e. ask whether they would like to change the faucet setting, or not. In order to eliminate the 

bias in user responses due to the previous water setting provided to them, we will randomize the order 

in which they receive each setting. This turns into a binary classification problem with input features of 

flow rate and temperature, and target output of user happiness. A supervised learning algorithm for 

nonlinear binary classification such as kernelized support vector machines (SVM) would be able to 

roughly provide the preferred faucet settings for each bin, and can program the faucet to prove each bin 

its “preferred” initialization, thereby minimizing adjustment time, inconvenience, and water. The 

kernelized SVM method (Ng, 2016) would minimize the function below for training set {𝑥(1), … , 𝑥(𝑚)} 

where 𝑥(𝑖) ∈ ℝ2 where each 𝑥(𝑖) is a vector containing one flow rate and one temperature. Each 𝑥(𝑖) has 

a corresponding “happiness” label 𝑦(𝑖) ∈ {1, −1} that represents whether the user was happy with the 

faucet setting. 

𝐽(𝜃) =  
1

𝑚
∑ φ(𝑦(𝑖)𝜃𝑇∅(𝑥(𝑖)))𝑚

𝑖=1 , where (4) 

φℎ𝑖𝑛𝑔𝑒(z) = max{1 − z, 0} and ∅(𝑥) is a feature mapping such that 𝐾(𝑥, 𝑧) = 𝜑(𝑥)T𝜑(𝑧)  
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Since a faucet is typically an adjustable product, where a user is able to adjust temperature and flow rate 

settings per task and during operation, our design method needs to learn how a user would adjust or tune 

the aforementioned initialization to their needs. Here, a reinforcement learning algorithm (Duchi, 2016) 

would incorporate user adjustments as an added feature with temperature and flow rate, and record the 

modified setting for the user the next time around. Over time, the faucet would be tuned through user 

adjustments and accurately learn the preferences for each user. 

Still to-be-addressed is expanding the ML algorithm's decisions to identify tasks beyond dish-washing, 

such as hand-washing and pot-filling. This will require input from the sensor system, which, again, is 

yet to be designed.  

4.4 Design Method Part D: Integration and refinement 

The final part of our method for resource-sensitive design involves integrating the first three parts 

through conducting a large-scale testing study of ~200 users using the faucet for a variety of tasks. 

Comparing the water use from the testing study to regular water use would help quantitatively uncover 

how effective this design method is in saving water.  

However, while the initializing and tuning method described in the previous section would only improve 

the faucets prediction of user preferences, its effectiveness would be limited by the setup of the problem. 

It is possible that there are other cognitive style features that we did not uncover through the dishwashing 

observations in Part A. The cognitive styles survey, or other assessment approach, may require 

additional information to make accurate predictions. Lastly, the faucet prototype itself may elicit 

different user behaviour than hypothesized due to form or function. In order to address these potential 

sources of error, refinement is important. This would involve revisiting each of the parts A, B and C and 

tweaking variables as necessary. Refinement is also important for the long-term project goal of training 

users in conservation. Understanding user behaviour holistically and iteratively would make the product 

more efficient in this regard. 

 

 

Figure 8. Integrating ML to initialize faucet settings based on user cognitive styles 

5 CONCLUSION 

This paper explored the design of a "telepathic" household faucet through the intersection of user 

behaviour, product physicality and machine learning (ML). The dishwashing experiment conducted 

found that user patience, temperature sensitivity and resource-consciousness were cognitive attributes 

that affect users’ faucet setting preferences during dishwashing. We also designed and built a prototype 

that modified the physicality of traditional plumbing systems and faucets to incorporate electronic 

control of flow rate and temperature for ease of applying ML algorithms. Lastly, the insights were 

summarized in a design method framework to guide other resource-sensitive design. 
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One observation from the design process of this faucet, at the intersection of user behaviour and ML, 

was that it was important to include larger plumbing system considerations when designing the faucet, 

and not merely focus on the product itself. This opened an opportunity to explore how a plumbing system 

could be modified for ML algorithms. Upon closer examination of traditional household plumbing for 

a non-automatic faucet, we determined that it was easier to design the product at the faucet-knob level, 

rather than at the supply-line level for two reasons – the lack of customizability of traditional plumbing 

systems to incorporate electronics as well as to prevent contact of water and electronics. Therefore, 

faucet plumbing systems need to improve at a fundamental level to allow for fully integrated automatic 

faucets. 

It is important to consider user reception of the telepathic faucet. For example, while users may be 

willing to wait for warm water out of a faucet they control manually, they might not be willing to wait 

for warm water the faucet is “supposed” to give it to them directly. They would not know if the faucet 

is malfunctioning or simply taking a while to warm up. We will gather similar user feedback regarding 

this in future research. 

Next steps include conducting a large-scale experiment of ~200 participants using the design method to 

uncover how much water a kitchen faucet catering to user cognitive styles can actually save. We also 

must design the sensor network that will determine which user is using the faucet and the task they are 

performing. Finally, we will design and conduct experiments to attempt to change user behaviour and 

further conserve water. 

Applying the insights to other household activities warrants further exploration. The presented design 

method has potential to conserve not only water, but other resources such as energy usage in a household.  
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