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1. Introduction

In a product development process, Numerical Design of Experiments (NDoE) are used to improve the
quality of products, by optimizing the product [Hu et al. 2008], or enhance its robustness [Patelli et al.
2012]. A NDoE is defined by an ordered sequence of simulations from a parameterized numerical
model. Thus, as a numerical simulation may be very time-consuming and expensive, a NDoE may
drastically accentuate the cost of study. This first issue can be solved by using specific methods.
Sensitivity analysis methods [Patelli et al. 2012] are used to identify and select parameters (i.e. factors)
and interactions between these parameters which have the most important influence on the studied
output. Surrogate modelling methods [Castric et al. 2012] are used to replace the initial numerical model
by a simpler model, able to be executed faster. Adaptive NDoE may be used to minimize the number of
experiments, by defining iteratively optimal experiments [Forrester and Keane 2009].

Nevertheless, these methods increase the complexity of the NDoE process. Multiple methods, with
numerous internal parameters and options, must be defined before executing the NDoE. This
configuration step may require expert knowledge to define the best combination of methods which lead
to an optimal NDoE process. A previous study, covering simulation data management applications for
numerical simulation process enlightened a lack of support for NDoE process data. It concluded that
capitalizing and sharing best practices may shorten the configuration step of this process [Blondet et al.
2015]. It aims to minimize the time spent by designers with no added-value.

The knowledge, concerning the NDoE process configuration, can be capitalized and reused by
Knowledge-Based Systems (KBS). KBS are a specific branch of Artificial Intelligence [Kiritsis 1995],
which aims to solve problems faster than humans, by exploiting data and knowledge more efficiently.
A KBS can analyze knowledge by different reasoning strategies, as symbolic, statistical and
connexionist (networks) approaches, and more recently distributed intelligence (e.g. multi-agent
systems, swarm intelligence, etc.). Specific methods and systems must be used to gather, classify, trace
and deliver a large amount of data and knowledge for different stakeholders in extended enterprises
during long periods. While some KBS had been developed to configure a DoE process [Lorenzen et al.
1992], they did not cover numerical aspects nor all types of methods and objectives used by NDoE.
This paper presents a KBS for NDoE process, to reuse capitalized data of every previously executed
process. Such a system aims to shorten the configuration step of the NDoE process by proposing
improved configurations to the designer for a specific study. Section 2 presents the global architecture
of the proposed KBS. This section focuses on the inference engine selection. Main inference methods
are compared regarding to our need of a decision-aid system to help the designer to configure the NDoE
process. Section 3 details the inference strategy, regarding to the inference engine selected in Section 2.
Section 4 shows a use case to illustrate the behavior of this KBS.
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2. Knowledge-based systems

A KBS can support designer's decision by analyzing capitalized data, representing the knowledge in a
company, and propose new solutions or advice. This section presents the KBS structure and defines the
inference engine used to propose new NDoE process configurations.

2.1 Specifications of the KBS for NDoE process

The goal is to find the best configuration of the NDoE process, regarding to its objective (surrogate
modeling, optimization, sensitivity analysis, etc.), constraints (e.g. execution time, accuracy, etc.) and
capitalized knowledge. As an example, a designer may not know how to choose a specific type of
surrogate model. According to capitalized knowledge and data already known by the designer, the KBS
system would deduce a good candidate of type of surrogate model.
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Figure 1. The proposed KBS structure for numerical DoE process

Figure 1 shows the general architecture of the proposed KBS, which is composed of:

e A NDoE process, based on a validated parameterized numerical model and a simulation process
able to execute each experiment. The process is entirely defined (e.g. objective, constraint, type
of metamodel, factors and outputs, etc.) and executed. NDoE outputs obtained are analyzed to
fulfill the objective of the NDoE process. For instance, a NDoE can be used for a sensitivity
analysis to determine the influence of factors and their interactions on the studied output [Da
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Veiga 2014]. Constraints could be, in this case, a time limit and a minimum accuracy on
sensitivity indices estimations.

e A knowledge base, to gather every previous configurations of NDoE processes. All data needed
to define completely the process are stored, as well as results;

e An inference engine, to deduce new solutions from the knowledge base, regarding to the new
incompletely defined NDoE process;

e A user interface, not represented here, is used to ensure a bi-directional communication with the
user. The user is able to define a known part of the NDoE process, to ask the system for a
complete configuration with explanations, and to validate or modify the proposed configuration.

In order to help the designer to configure the NDoE process, the inference engine must be selected
regarding to several criteria:

e Learning: the system has to learn from the capitalized knowledge each time the knowledge base
is updated.

e Speed: the learning step and the reasoning step have to be as fast as possible. The time spent by
the system must be lower than the time spent by the designer.

e A priori knowledge support: the system should be able to be enriched by designer's knowledge
to simplify the inference process.

e Inference on continuous and discrete variables: the inference engine aims to determine
numerical parameters and to select methods

e Explanation: the system must be able to explain clearly its reasoning to the user.

2.2 Comparison of inference methods

To analyze the knowledge base, a large amount of inference engines exists. This subsection focuses on
several methods used in the context of mechanical design and simulation. These methods will be
discussed according to previously described criteria.

2.2.1 Rule-based system

Some expert systems were developed and deal with DoE to bring support for researcher in their
experimental approach [Weiner 1992]. A specific expert system was designed to configure a DoE
process [Lorenzen et al. 1992]. All of these developments, based on predefined rules, do not support
NDoE. The scope of covered methods is very limited. Another KBS was developed for finite element
meshing [DolSak 2002] to propose optimal solution for several mesh parameters. A large amount of
rules, obtained by a machine learning method (inductive logic programming), composed the knowledge
base. This KBS was developed to shorten the time-consuming task of meshing. Another applications of
rule-based systems exist, for instance for design automation [Naranje and Kumar 2014]. The main
limitation of this approach is the requirement of an exhaustive and accurate definition of rules. A second
limitation is its boolean property, which can dismiss several solutions which can be potentially good.

Fuzzy logic alleviates these limitations by taking into account the inaccuracy of the knowledge. It has
been used, for instance, for predicting finite-element-analysis results [Subba Rao and Pratihar 2007].

2.2.2 Machine learning

Machine learning techniques are able to learn dynamically from updated knowledge-base to deduce
rules. As each case in the knowledge base is already classified and each data are labelled, only known
methods based on supervised learning, and applied for mechanical product development processes, are
presented here.

1. Aurtificial neural networks

Artificial neural networks were used, for instance, to predict gasoline engine performance [Tasdemir
et al. 2011]. This application shows a close efficiency between artificial neural networks and fuzzy
logic methods. Another application for manufacturing uses this method for feature recognition and
process planning [Ding and Matthews 2009]. To select each operation, tools, etc., binarized outputs
vectors are defined. Artificial neural networks have been also used to determine the best surrogate
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modelling method according to a specific problem [Cui et al. 2016]. The main drawback of this
method is its "black box" property. It is impossible to explain the reasoning of a KBS using artificial
neural networks.

2. Decision trees

They can be used for feature selection, for instance, to identify important sources of fault
[Sugumaran and Ramachandran 2011]. These methods are non-parametric (no hypothesis on data
distribution), non-linear, robust and easy to understand. Over-fitting effects can be limited by
pruning methods for instance [Sahin et al. 2012]. Decisions trees are limited to discrete variables
and it cannot be used for regression tasks. It is also impossible to pre-define the structure of the tree,
as this step is computed automatically. Thus, a decision tree cannot be enriched by user's knowledge
[Bayat et al. 2009].

3. Bayesian networks

This probabilistic approach may be used for classification and detection. As an example, it may be
used to predict the quality of a machining process [Correa et al. 2009]. Bayesian networks can
represent uncertain knowledge with clarity. The structure of the network can be defined by the user
according to its knowledge. Bayesian networks are able to determine as discrete as continuous
variables.

All of these machine learning models fulfill the learning property needed, but they may presents more
difficulties to be determined because of over-fitting phenomenon and the number of their internal
parameters. Some of them are unable to explain the reason of the proposed decision, as neural networks.
Another drawback is the difficulty to compute numerical internal parameter of methods used in the
NDoE process, except for bayesian networks.

2.2.3 Case-based reasoning

This reasoning method reuses or adapts former solutions for a new problem. It was applied, for instance,
for finite element analysis to support adaptive mesh processes [Khan et al. 2014]. This method does not
need any model and thus, there is no learning step like machine learning methods. The first step can be
based on similarity measures, ranking, k-nearest neighbor algorithms, etc. Cases can be reused by
adapting the most similar case (transformational reuse) or by reusing the method used to obtain this
similar case (derivational reuse). For transformational reuse, a domain-specific transformational
operator and rules are used [Lopez de Mantaras et al. 2005]. Case-based reasoning provides clear
explanations of its reasoning process. The main drawback of this method is the obligation to define
specific rules for case adaptation.

2.2.4 Hybrid systems

Hybrid KBS combine several approaches in their inference engine. A large amount of different
hybridization has been developed in the last decade [Sahin et al. 2012]. For instance, the ANFIS method
(Artificial Neuro-Fuzzy Inference System) combines fuzzy logic and neural networks [Jang 1993], [Roy
and Pratihar 2013]. However, this approach keeps the unexplainability of a neural network.

2.2.5 Comparison

All of these methods reviewed above need to be compared to define the inference strategy of the KBS.
Results are summarized in Table 1. The speed criterion is unable to discriminate any method, as it
depends on the complexity of each model, the size of the dataset, the size of the output and computational
resources. The only method which respects all others criteria is bayesian network: able to learn from a
dataset, able to determine the value of discrete and continuous variable, able to be enriched by personal
user's knowledge and able to explain reasoning with clarity. However, the distribution of each variable
must be set or estimated to compute conditional probabilities. While it could be easily set for discrete
variables, continuous variable are more difficult to be modelled. To alleviate this difficulty, a mixed
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approach is proposed, dealing with discrete variables by a bayesian network and with continuous
variables by an artificial neural network. This approach is detailed in the next section.

Table 1. Comparison of inference methods

Class of reasoning | Rule-based reasoning Machine learning Case-based Hybrid
reasoning systems
Methods Formal Fuzzy Neural | Decision | Bayesian ANFIS
logic logic networks trees networks
Learning N N Y Y Y Y Y
Continuous/discrete NY NY Y/Y N/Y Y/Y Y/Y Y/Y
variables
A priori knowledge Mandatory Impossible Possible | Mandatory | Mandatory
Explainability + ++ - ++ ++ ++ -

3. KBS for numerical DoE

This section aims to define the inference strategy able to support the NDoE process configuration. Data
describing the NDoE process are firstly described to design the knowledge base. Based on inference
methods comparison, the inference strategy is specified according to the knowledge base specifications.

3.1 Knowledge base

The knowledge base contains a structured description of each NDoE process. Data describing the
process can be organized in several categories (Figure 2):

eAdministrative data, links to project, CAD model, factors and outputs
eDefined by user or automatically by data management tools

<

Context

eObjectives and constraints for a specific NDoOE process
eDefined by the user

<

Strategic

eMethods, as DoE type, metamodel type, internal algorithms, etc.
eDefined by the user or by the inference engine

<

Technical

eNumerical parameters related to a specific method
eDefined by the user or by the inference engine

<

Parametric

<

Figure 2. Data classification

o Context data: it covers identification data, authors, dates, and project, product, numerical model
linked with the NDoE process. It concerns also the number and types of factors involved in the
DoE, studied outputs, the computational cost of one simulation (assessed by the system if
necessary), the hardware used. Context data are mandatory to execute the KBS. These data must
be defined manually or retrieved in a data management system;

e Strategic data: it is specific to the objective of the NDoE process (sensitivity analysis, surrogate
modelling, robustness analysis, optimization, exploration, etc.) and constraints.
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e Technical data: it gathers type of methods used according to strategic data. For instance, for the
surrogate modelling objective, the type of DoE and surrogate model has to be selected. It
concerns also methods used by these methods. For instance, a method to compute polynomial
coefficients for the polynomial chaos surrogate model must be selected, and several exists;

e Parametric data: each numerical datum needed by each method, as the degree of a polynomial
model or the number of iteration of an optimization algorithm.

In addition to these types of data, NDoE process performance indicators are also taken into account.
They are specific for each objective and they are useful to compare processes to each other. For instance,
the Q? coefficient is used to measure the surrogate model predictivity (i.e. its ability to predict good
results from unknown inputs).

3.2 Inference methodology

The proposed KBS can operate in two ways. The KBS aims to complete the definition of a DoE process
according to already defined context, strategic, technical and parametric data. The KBS can also
diagnose the efficiency of a user-defined configuration by predicting process performance indicators,
like accuracy or time.

The inference strategy is user-centered. He/she is able to define input data manually, change several
aspect of the configuration proposed by the KBS and even to run the NDoE process even it seems to be
inefficient. Moreover, performance indicators are interpreted by the user, not by the KBS, in order to
avoid an inherent bias in the inference engine. For instance, a NDoE process declared as inefficient
would penalized wrongly several methods, while an inefficient configuration could be composed of
potentially very efficient methods, and it also depends on the context, as the initial numerical model
complexity (non-linear properties, multi-physics computations, etc.). This ability is let to the user,
regarding to its own requirements.

The proposed inference methodology is based on 2 main steps, illustrated in Figure 3 and in Figure 4.
All missing data needed to complete the configuration are predicted by a bayesian network except
continuous variables, which is predicted by an artificial neural network.

3.2.1 DoE process definition

A preliminary step consists in defining context and strategic data demanded to start inferences. These
data may be gathered by a data management system deployed in the company or defined manually by
the user. These data are essential to ensure traceability and to define clearly the context of an optimal
NDoE process configuration.

3.2.2 Methods selection

A bayesian network is used to deduce the best combination of methods. This bayesian network must
take into account the influence of each technical and parametric data.

Some classes of methods will be used depending on the objective and on the user's will. For instance,
while a NDoE must be chosen in every cases, a sensitivity analysis method cannot be selected if the
objective is surrogate modelling. Moreover, metaheuristics (for adaptive DoE) can be used for several
objectives but they are optional. From this observation, some variables can be ignored or are mandatory
according to the objective of the NDoE process. It is more convenient to define one bayesian network
for each objective, to avoid a useless complex network. The structure of the network (i.e. stochastic
dependencies) is modelled according to expert knowledge.

Only available data, corresponding to the right objective, are used to compute the probability distribution
of each variable. There is no hypothesis on probability distributions of variables.

While it is generally difficult to model the probability distribution of continuous parameters, all
parametric data must be included into the bayesian network as their influences can be significant. At
this step, continuous variable are included as discrete variable composed of several continuous intervals.
This discretization is used to prepare the third step, by estimating the most probable interval for needed
parametric data.
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3.2.3 Parametric data computation

To complete the configuration of the NDoE process, an artificial neural network is used to compute a
value accurately for continuous parametric data. From most probable intervals obtained from the
bayesian network, a subset of the set of case determined in the first step is extracted. As the bayesian
network, the neural network is pre-built according to the same input type taken into account in the
bayesian network, for each type objective. A binarization is used to represent selected and non-selected
methods. The new set of case is used to train the neural network.
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Figure 4. Artificial neural networks for NDoE process

3.2.4 Implementation
The KBS is supported by different tools:

e Virtuoso server (http://virtuoso.openlinksw.com/), containing each case of DoE process;

e Netica (http://www.norsys.com), to compute a Bayesian network;

e Uranie (http://sourceforge.net/projects/uranie/), to compute parametric data by artificial neural

networks, and to execute the DoE process;

e Code Aster (http://web-code-aster.org), a finite-element analysis software, to run simulations.

This system will be supported by an user interface.

4. Use-case

This use-case presents an application of the proposed KBS to a very specific case. It aims to illustrate
the running of the bayesian network based on a simple test-case and limited to specific choices.

4.1 Problem definition

The user wants to obtain an accurate and predictive surrogate model of the finite-element model of a T-
shape beam. This model has a very low computational cost, in order to test our KBS fast.
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Table 2. Description of the model used for the use-case

Factors Model Output
E: Young's modulus (MPa) e 4 S : maximal value of the first
Fx and Fy: Force (N) on B ot 13:20 invariant of the strain tensor
%Foroe 0N

- N

The bayesian network used for this use-case is illustrated by Figure 5. A limited number of variables
and states were considered for the bayesian network. Only one numerical model and objective (here,
surrogate modelling) are considered, so that these variables were not included into the network. The
database is composed of 500 NDoE processes, described by the DoE type, the number of experiments,
the type of surrogate model and one parameter for each type of surrogate model (degree for polynomial
chaos and the number of neurons for neural networks). Each DoE process produces two performance
indicators, representing accuracy (RMSE) and predictivity (Q?) of each computed surrogate model.

4.2 Results
Results are integrated into the bayesian network in Figure 5.
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Figure 5. Bayesian network results to choose the best configuration

Conditional probabilities allow the user to request the most efficient combination of method to get
maximal accuracy and predictivity. This figure represents the network after the learning step and after
the user set his/her requirements. As represented in grey nodes, he/she wants a surrogate model with
RMSE between 1E-05 and 1E-04, and a Q? between 0.95 and 1 (i.e. a very good surrogate model). The
network translate this by a probability of 100% and computes, thanks to conditional probabilities, the
probably most efficient configuration: a Halton type DoE with 30 to 40 experiments, combined with a
polynomial chaos with degree 3. This configuration is the best according to known NDoE processes and
the context data.

5. Discussion

The proposed KBS aims to shorten the NDoE process by reusing capitalized knowledge and avoiding
designers to loose time by searching for an optimal configuration. It is important to compare the time
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spent to set the KBS, the time needed for the learning step and the time really saved for designers. This
development is more adapted to companies which need and have already applied a data management
strategy to capitalize data.

Also, it may be useless if there is only one user of NDoE process in the whole company. A lonely user
will be the only expert in the company and he/she will be the only source of data for the KBS. This KBS
offers a framework to share, retrieve and analyze knowledge. It would benefit extended companies, with
several teams in different locations, using NDoE processes for different goals. A theoretical threshold
may also exist when the knowledge base becomes to be too huge. In this case, the learning step would
be too long, although in this case, the knowledge base would be highly filtered and sorted before the
learning step to avoid a too huge learning data set.

The proposed system can be considered by most of the users as a black-box, but an expert is necessary
to enrich the KBS with, for instance, a new kind of variable.

6. Conclusion and future works

Numerical DoE process could be very complex to be configured. A KBS is proposed to help the designer
for this task. This approach aims to reuse capitalized knowledge to shorten the preparation step. This
KBS is based on a knowledge base, to support data capitalization, classification and requests, and an
inference engine for data analysis. The proposed inference methodology is based on a mixed approach,
combining bayesian network and artificial neural networks. This approach will be compared to a
bayesian network in which the continuous variables are directly modelled or estimated from data.

Each aspect of the KBS will be extended, as the bayesian network structure and the knowledge base, to
validate this proposed KBS and to cover a large scope of methods and configurations. Learning
algorithms will be compared and a validation strategy will be set to avoid over-fitting. Furthermore, the
structure can be also determined by a learning step, while it is currently set according to expert
knowledge.

These developments extend previously developed expert systems capabilities, by combining uncertain
expert knowledge and empirical data analysis, and apply an inference method used in other fields to the
numerical simulation process. Such a KBS could make the use of NDoE easier for companies, leading
to better products in a shorter and shorter product development process.
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