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Abstract 
This paper presents a new method for analysing the cost structure of a mass customized 

product family. The method uses linear regression and backwards selection to reduce the 

complexity of a data set describing a number of historical product configurations and incurred 

costs. By reducing the data set, the configuration variables which best describe the variation 

in product costs are identified. The method is tested using data from a Danish manufacturing 

company and the results indicate that the method is able to identify the most critical 

configuration variables. The method can be applied in product family redesign projects 

focusing on cost reduction to identify which modules contribute the most to cost variation and 

should thus be optimized. 

Keywords: product family optimization, cost drivers, cost analysis, solution space 

development 

 

Introduction 
Product cost is a very important factor for companies since it is determinant for the 

contribution margin, company profit, competitiveness and ultimately the survival in a 

particular market. For this reason it is necessary for most companies to continuously ensure 

that the cost of products is as low as possible without compromising the target functionality, 

performance and quality. To achieve this it is necessary to evaluate and optimize the product 

portfolio with regards to new products as well as existing ones. Typically, product 

development projects are concerned with updating existing products with new features or 

redesigning for manufacturability and thus reduced cost using design for manufacturing (DFM) 

methods. However, to focus DFM efforts efficiently it is useful to be able to identify which 

parts of a product contributes the most to the product cost, i.e. analyze the cost structure 

to specify which parts of a product should be redesigned. 

In any company it is crucial to continuously evaluate the profitability of the product range, 

however in companies with a significant product variety such as mass customization or 

engineer to order companies, this is a challenging task. In companies offering customized 

products, manufacturing cost will depend on a particular configuration of a product and these 

companies often experience that it is not obvious which product properties drive cost. This 

makes it nontrivial to identify which products (or combinations of configurations) are 

profitable and which are not. This evaluation and the resulting development of a product 

portfolio in mass customizing companies is referred to as solution space development, which 

is one of three fundamental organizational capabilities which differentiate successful mass 

customizers from the non successful [10]. 

In mass customization, where it is unusual to sell and produce more than a few identical 

products but rather sell high numbers of individually customized products, it makes little 
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sense to evaluate the cost structure of a single product. Instead the solution space must be 

evaluated as a whole. Evaluating the profitability of the solution space can be approached in 

several different ways that can be fundamentally separated into qualitative or quantitative 

approaches. Due to the vast complexity of a mass customization solution space in terms of the 

number of product features and modules, usually leaving a practically infinite solution space, 

a qualitative approach seems unfeasible indicating that a quantitative approach should be 

pursued. 

 

Existing methods 
A number of manufacturing process dependent methods have been developed for cost 

estimation, implying that the particular method of estimating cost can only be applied to 

certain processes e.g. casting or welding [3,4,11,12,12,16]. Cost estimation methods 

dependent on the specific product type also exist. In particular much research has been 

presented within the area of estimating cost during product development for both the finished 

product and the development process [2,6,7,14,18]. Kingsman & de Souza [5] introduced a 

general framework for cost estimation and pricing decisions, but no practical methods for 

estimating cost are presented. Other studies focus primarily on describing mathematically 

using synthetic models how customized products can be priced, however primarily compared 

to similar non-customized products [1,13]. 

One of the deficiencies of the approaches found in literature is that they do not take the large 

solution spaces into account but rather focus on a single product thus rendering them 

inapplicable for mass customized products. Furthermore most are synthetic, meaning that a 

cost and pricing model must be developed in order to evaluate the product profitability which 

is complicated by a high variety. Finally a number of the approaches described in literature 

are product specific rather than generic. 

 

Elements of Product Cost for Customized Products 
When analysing the manufacturing cost for a standard product, the direct costs are easily 

identified. Basically the manufacturing costs can be divided into three: 1) component cost, 2) 

assembly cost and 3) overhead cost [15]. In this paper we will not address overhead cost 

further. Identifying the component costs for a standard product is typically merely a matter of 

summing the cost of each component in the bill of materials and based on the cost information 

for the individual components the most expensive components can be identified as the most 

interesting for reducing product cost. The assembly cost can be analysed by observing an 

actual assembly process and measuring the time needed for each operation. However, for 

mass customized products, this analysis is more complex. 

The complexity of analysing the cost structure of a mass customized product depends largely 

on the variation in product structure and whether the product consists of standard modules 

which are assembled according to configuration or individually customized components are 

also included in the product. 

As for standard products, the manufacturing cost of a mass customized product will consist of 

the component costs and the assembly costs. For some mass customized products the 

manufacturing process will consist entirely of assembling standard modules. In this case, 

analysing and identifying the modules contributing the most to component costs is trivial 

since each module type will have a standard cost. However, in cases where the product is 

assembled partly or entirely from individually customized modules, the cost of each module 

will vary depending on configuration and it is thus not possible to draw general conclusions 

on cost distribution from these modules. 

The assembly cost is largely labour cost and thus depends on the time required to assemble 

the product. In many cases different modules will require different times for assembling and 



 

the assembly costs will thus vary depending on the combination of modules included in a 

configuration. Furthermore, it cannot be assumed that the time to assemble a module with a 

partly assembled product will depend entirely on the type of the module. In some cases the 

assembly time will depend on both on the module being mounted and the module(s) 

interfacing to the module being mounted as illustrated in figure 1. 
 

 
 

    
Assembly time: 

90 s 
Assembly time: 

70 s 
Assembly time: 

80 s 
Assembly time: 

110 s 

Figure 1. Example of product assembly times depending on combinations of modules 

 

These issues lead to the fact that assembly times are to some extent unpredictable. Since mass 

customization product families often have a solution space containing billions of possible 

combinations it is infeasible to evaluate each combination of assembly times. However, 

identifying which modules or module combinations lead to particularly increased assembly 

cost is essential in redesigning a product family for reduced manufacturing cost. 

 

Research objectives 
When optimizing a product family with respect to manufacturing costs, it is essential to be 

able to identify the modules or configuration variables which are significant to manufacturing 

costs, since optimizing those modules will expectedly lead to the greatest cost savings. The 

objective of this paper is to investigate a method for automatically establishing a model based 

on historical data describing the relation between product variety and the variation in 

manufacturing costs. This model should be a generic model and thus cover all possible variety 

within a product family without having to analyze each possible combination. 

The main research questions are: 

 

 How well can a statistical method applied to historical configuration and cost data 

describe variations in product cost? 

 How is such a method applied to optimize product designs in product development 

projects? 

 

Methods 
Since it is desired to establish a simple method for analyzing the cost structure, a simple linear 

model is proposed. Due to the complexity of the problem and the number of variables 

considered (large number of components and resources involved) multiple linear regression 

should be used [17]. However, since some manner relations can be expected between the 

independent variables all insignificant variables cannot just be removed in one step. One 

method is to test all alternative combinations of variables must be considered. In the case of 

200 independent variables and desired model including 10 of these this would imply testing 

8.15x10
22  

linear combinations, making this non practical to implement in real life settings. 
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Stepwise regression is a particular method for arriving at linear model and is applied when a 

reduced linear model is desired and some form correlation can exist between the (assumed to 

be) independent variables. Stepwise regression comes in two forms forward selection and 

backward elimination. Forward selection is based on stepwise adding the independent 

variable to the model that accounts for the largest amount of variation in the dependent 

variable. Backward elimination works in the opposite manner, by starting with a full linear 

model and stepwise removing the variable that has the least impact on the variation of the 

dependent variable. If the independent variables are in fact completely independent the model 

with the same number of variables found using forward selection and backward elimination 

will be the same [9]. However, when the independent variables are not completely 

independent the derived models may be different. Using forward selection implies the risk of 

adding a variable early on that later (due to the inclusion of other variables) becomes 

insignificant. Using backward elimination implies the risk of removing a variable that later 

(due to the elimination of other variables) actually becomes significant again [9]. In this 

particular paper the backward elimination method for stepwise regression is applied. 

Backward elimination is chosen over forward selection since in the case product configuration 

it seems better to risk dropping variables that explain a given behaviour (in this case of cost) 

than having an overly complex model with several variables explaining the same behaviour. 

However, a potential pitfall of using backward elimination is the need to be able to generate a 

full linear model, which implies the existence of n+1 observations where n is the number of 

independent variables. So in cases with a limited number of observations available a forward 

selection approach may be more suitable with the risk of at arriving at more complex model to 

explain the same amount of variation in the dependent variable. 

The principle of applying backward elimination to the problem is to estimate a (simple) linear 

model for historical configuration data and corresponding costs, thereby creating a linear 

model that can predict cost for new configurations [8]. The way backward elimination 

simplifies the linear model is by iteratively removing variables from a large set of data 

describing a number of historical product configurations and fitting a model to the reduced set 

of data. The output of the method is a linear model with few parameters, which can be used to 

estimate costs with the most significant configuration parameters as inputs [8]. 

The set of variables describing the configurations can contain different types of variables. 

Since the method reduces the number of variables significantly it is not necessary to 

qualitatively select the variables before the method is applied, but merely provide a gross list 

of variables describing each historical product and a corresponding incurred cost. When a 

product configuration system is used, a series of data files from this can be used as input to 

the model estimation process. The configuration variables can include scope options, 

performance, dimensioning variables, production parameters, feature options etc. Ideally the 

method takes all available product information. The only mandatory data is a cost for each 

configuration and more observations than initial parameters. 

 

 

Figure 2. Activity diagram for the backwards selection method 
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In figure 2 the sequence of activities in the backward elimination method is presented [9]. To 

ensure that it is possible to fit a model some conditions must be met for the input data. First, 

all variables that are constant are removed (i.e. features of the product always included). 

Second, if two variables are perfectly correlated one is removed (i.e. two features that are 

always sold together), in principle it does not matter which is removed. All these activities 

(including the data cleansing) are implemented in a script executed in the statistical analysis 

tool R. The script has a loop that runs until a certain precondition is satisfied. In the first 

iteration, a linear model is fitted to the full data set, and the least significant configuration 

variable is removed. In the next iteration, the model is fitted to the reduced data set, and 

continues until the precondition is satisfied. In this test, the remaining number of variables 

included in the cost estimation model was used as precondition so that the loop ended when 

e.g. 5 variables remained. The finished model now consists of the selection of variables most 
significant for the cost and the linear model to calculate a cost from the values of these 
variables. In the application any number of termination conditions can be used. Typically 

residual sum of squares (R
2  

or modified R
2
), i.e. the amount of variation explained by the 

model, is used. However, it may be difficult to translate this measure into a business term. For 

this reason it is chosen to instead use MAPE (Mean Absolute Percentage Error) as evaluation 

criteria in this paper. 

 

Results 
The proposed method has been tested on actual data from a manufacturing company. The case 

concerns a medium sized company in Denmark producing technical products for domestic 

water installations which are configured within a predefined solution space. The products 

share a common structure and are described using typically around 50 variables. The company 

produces products configured with in a given set of fixed options. The company registers 

material and salary costs as well as net margin for all sold products. Furthermore a full route 

and Bill of material is available for all sold configurations. The data uses for this analysis 

contains about 200 configurations. 

The method was applied to the data with the criteria of reducing the data set to the most 

significant 5, 10, 15 and 20 variables. The reason for reducing the model to different sizes 

was to analyse how well very simple models could explain variation in manufacturing cost. 

The results are shown in table 1, where each row represents a separate model with a given 

complexity, 5, 10, 15 or 20 variables, with the corresponding R
2 

and MAPE values. For 

comparison, the MAPE value of the full model including all configuration variables before 

the backward elimination was applied was 3.42%. 
 

Table 1 Results from applying backwards selection to configuration data 

 

Variables R2 MAPE Reduction of complexity 

5 0.6561 4.56% 90% 

10 0.7051 4.08% 80% 

15 0.7379 3.58% 70% 

20 0.7454 3.42% 60% 
 

Interpretation of results 
Based on the MAPE values included in table 1, it seems that a model with 20 variables, i.e. a 

60% reduction in configuration variables and thereby model complexity describes the 

configuration with the same accuracy as the full model, since the MAPE value is the same for 

the full model and the 20 variable model. This clearly indicates that the remaining 30 variables 

which were removed do not contribute to the variation in manufacturing cost. 



 

However, perhaps more interesting, going from 20 to 5 variables, i.e. a 75% reduction in 

complexity only increses the MAPE by 1.14, indicating that those 5 variables by far are those 

which contribute the most to variation in manufacturing cost. 

The variables identified from the analysis was subsequently analysed qualitatively by a 

product expert from the comapny, who could confirm that those variables for different reason 

could contribute significantly to variation in cost. All identified configuration variables 

corresponded to the selection of certain components in the product, indicating that those 

particular components are significant cost drivers which should be addressed in cost 

optimization of that product family. 

Althoug the results indicate that certain configuration variables, which in this case 

corresponded to specific components, are major cost drivers, this does not clearly indicate that 

this cost can in fact be reduced. However it does give an indication of where to focus a 

qualitative analysis of cost reduction potential. 

 

Applications 
Based on the test results, the authors believe that the method proposed can be applied 

successfully in a number of different ways. When redesigning a product family, the method 

can be applied to identify cost drivers with respect to the variation in manufacturing costs. 

This also means that the method does not identify cost driver for manufacturing costs which 

are static across different configurations. In practice, this means that modules or components 

which are a part of the product platform and thus always included in the products, are not 

identified using this method. However, as indicated previously in this paper, platform 

elements in a product should be addressed using traditional design for manufacturing 

methods, since variation does not add complexity to the process. 

It is important to bear in mind that this method cannot be applied without being 

complemented by a qualitative analysis. However, this method suggests a number of areas to 

focus the qualitative analysis thus reducing the effort necessary to identify actual saving 

potentials. The need for a complementary qualitative analysis is emphasized by the 

circumstance that for some configuration systems, configuration variables are not representing 

module choices but rather product functionality or performance requirements, which are 

eventually translated to a bill of material. In this case, product experts will need to translate 

the “functional” configuration variables to specific components to achieve the desired result; 

a gross list of components which seem to be cost drivers. 

The method as it was applied in this paper uses the total manufacturing costs as the dependent 

variable since it is desired to identify both drivers for component and assembly cost. However, 

if the data is readily available, the method could be applied using only the assembly cost to 

identify components which are particularly time consuming in the assembly process. In the 

same manner, the method could be applied to using the component costs as the dependent 

variable identifying certain components which are driving the component fabrication cost. 

The latter is only relevant in cases where customized components can be included in a 

configuration. Generally, the method can be applied to any dependent variable which can be 

related to specific configurations to serve other purposes, e.g. sales price, lead times, 

contribution margin, rework rates, customer return rates etc. 

 

Limitations 
Apart from the limitations indicated above requiring a supplementary qualitative analysis, 

there are a number of other limitations due to the fact that the method is based on historical 

data. In order to apply the method, a sufficient data basis must be available. In practice this 

means that there must be a higher number of observations than configuration variables. 

Obviously, the higher number of configurations, the higher validity of the conclusions can be 



 

achieved. Since the methods needs historical data, it can only be applied to existing product 

families and thus not DFM efforts regarding new product families. 

In products where raw material prices have a high variation over the period of the registered 

configurations, those variations may contribute more to the variation in manufacturing cost 

than the configuration variables, which the method in its current form does not take into 

account. 

Finally, the requirement for a high data quality is vital for this method to produce valid 

results. All relevant manufacturing costs must be registered related to the correct 

configuration on the specific order as well as changes in the configuration over time must be 

registered to reflect what has actually been produced. 

 

Conclusion 
From the results presented it is concluded that the method is able to produce a cost model 

which with high accuracy can identify the configuration variables which describe the variation 

in manufacturing costs and can thus be used for identifying cost drivers which can be used 

to reduce product costs. This is useful for companies manufacturing customized products 

since it is difficult to identify the relations between product options and manufacturing 

costs. The method is robust towards different types of data input and can thus be applied to a 

data set without prior knowledge of the meaning of the configuration variables. Furthermore, 

the method can also be applied to identify relations between product options and other 

variables such as contribution margin, lead times, rework rates etc. in order to optimize a 

product family with regard to other goals. 

Further research into this area will include applying the method to data sets for different 

product types in other industries as well as other types of dependent variables  to  meet different 

optimization criteria. 
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