
ICED15  

 

 

 

HOW DOES EXPECTATION CHANGE PERCEPTION?:           
A SIMULATION MODEL OF EXPECTATION EFFECT 
Yanagisawa, Hideyoshi; Mikami, Natsu 
University of Tokyo, Japan 
 

Abstract 

Prior expectation affects posterior perception of physical variables, such as weight of a product. This 
psychological effect is called expectation effect. Two different patterns of expectation effect, contrast 
and assimilation, were observed. In this paper, we propose a simulation model of the expectation 
effect that explains the conditions of contrast and assimilation. We assume that perceived variable is 
estimated using a Bayes’ inference of prior prediction and likelihood based on sensory stimuli. We 
formalize the expectation effect as a function of three factors: expectation error, prediction uncertainty, 
and external noise. We conducted computer simulations with the model and obtained a hypothesis of 
the conditions of assimilation and contrast. To validate the hypothesis, we conducted an experiment 
with participants using the size-weight illusion as a case of the expectation effect. Both the results of 
the simulation and the experiment revealed that 1) the pattern of expectation effect shifted from 
assimilation to contrast as the prediction error increased, 2) uncertainty decreased the extent of the 
expectation effect, 3) and external noise increased the assimilation. 
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1 INTRODUCTION 

According to the expectation confirmation theory (ECT), disconfirmation between prior expectation 
and posterior experience affects customer satisfaction of products and services as well as perception of 
their performance and quality (Oliver 1980, Oliver 1977). Expectation confirmation works as an 
appraisal component that evokes emotions such as contentment, satisfaction, disappointment, and 
dissatisfaction (Demir et al. 2009). Expectation disconfirmation evokes surprise and induces emotions 
that affect the consumer’s overall opinion of a product (Ludden et al. 2012). Furthermore, prior 
expectations may affect and change posterior perception and experience. Researchers from a broad 
range of fields have observed this psychological bias, the so-called expectation effect, with regard to 
different cognitive processes such as desire for rewards (Schultz et al. 1997), emotions (Wilson et al. 
1989, Geers and Lassiter 1999), and sensory perceptions (Deliza and MacFie 1996, Schifferstein 2001, 
Yanagisawa and Takatsuji in press). The expectation effect changes the disconfirmation between 
expectation and experience. Thus, the expectation effect is an essential factor to ensure the satisfactory 
design of products and services.  
In a time sequence of user experience (UX) of a product, users shift from one sensory state to another 
in cyclic interactions involving action, sensation, and meaning (Krippendorff 2005). We expect that 
users would predict subsequent states between such transitions of state (e.g., we expect a meal to taste 
a certain way based on how it looks, the weight of a product before lifting it, the usability of a mouse 
by looking at it, etc.) This prior prediction affects posterior perception, that is, the expectation effect. 
The authors of this study previously found that visual expectation changes tactile perceptions of 
surface texture (Yanagisawa and Takatsuji in press). We can explain a kind of perceptual illusion 
using the expectation effect. For example, people perceive a smaller object as heavier than a larger one 
although the weight of both objects is identical. This well-known size–weight illusion (SWI) can be 
explained as a visual expectation effect. People expect a larger object to be heavier than a smaller one. 
Prior visual expectation of the objects’ weights magnifies the perception of difference between the 
expected and actual weights. Although there exist many experimental findings on the expectation 
effect in different disciplines, the general mechanism on why and how the effect occurs is less well 
understood. A mathematical model of the expectation effect based on a fundamental mechanism 
enables us to estimate user perception of product and service. The authors of this study previously 
proposed a mathematical model of the expectation effect using the information theory (Yanagisawa et 
al. 2013). They modeled prior expectation as a subjective probability distribution and hypothesized 
that Shannon’s entropy of the distributions representing uncertainty of prior expectation determines 
the occurrence of the expectation effect. An experimental result of the visual expectation effect of 
tactile texture supported the hypothesis.  
On the other hand, two different patterns of expectation effect, contrast and assimilation, were 
observed. Contrast is a bias that magnifies the difference between prior expectation and posterior 
experience. Assimilation is a bias that diminishes expectation incongruence. It is important to 
understand whether the expectation effect is contrasting or assimilating, because they exaggerate or 
diminish the perception of expectation disconfirmation as a factor of satisfaction respectively. 
However, the mechanisms and conditions governing the contrasting and assimilating patterns have not 
been explained. In this paper, we propose a mathematical model of the expectation effect that explains 
the conditions of contrast and assimilation by applying knowledge found in the field of neuroscience. 
Based on the proposed model, we conduct computer simulations of the expectation effect and obtain 
an accurate hypothesis of the conditions of assimilation and contrast. Finally, we demonstrate the 
appropriateness of the hypothesis through a sensory experiment using the SWI as an expectation 
effect.  

2 MATHEMATICAL MODEL OF EXPECTATION EFFECT  

2.1 Model of perception with prior expectation 

We define perception as an estimation of external physical property, such as the weight of an object. 
Sensory stimulus from the external physical world, such as pressure applied to a hand, are transformed 
to patterns of neural signals. We call the neural representation of an external physical variable 
encoding. Based on the pattern of neural signals, our brain estimates the physical variable. We call this 
estimation process decoding. We assume that sensory stimuli are encoded as certain firing rates of 
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neural populations. This type of neural coding is called rate coding. Based on the firing rate 
distributions from a sensory stimulus, R , our brain forms the likelihood function, ( | )R  , of a 

physical variable,  . On the other hand, a physical property has certain frequency distributions in the 
world. Human beings learn such frequency distributions throughout their life. Based on such learned 
distributions, human beings predict a physical variable,  , before experiencing sensory stimulus. For 
example, in the SWI, people predict the weight of an object by looking at it before actually lifting it 
up. Predicted physical variable should follow certain probability distributions. We define such 
distribution as prior, ( )P   . Recent studies in neuroscience showed that estimation of a physical 
variable, that is, decoding, follows the Bayesian estimator (e.g., Ernst and Banks 2002, Brayanov and 
Smith 2010). Based on Bayes’ theorem, our brain estimates the distributions of perceptions or 
posterior,  |P R , using prior and likelihood.  

     
   
|

|
|
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P R

R P
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 (1) 

Since the denominator of the right-hand side of Equation (1) is a constant for normalization, the 
posterior is proportional to the product of prior and likelihood. A peak of posterior, post , is an 

estimate of a physical variable. We can define the expectation effect,  , as the difference between 

post  and the maximum likelihood value of the obtained firing rate, lik . 

post lik   
 (2) 

We define expectation disconfirmation, d , as a difference between a peak of prior, pri , and post . 

We call the difference between pri  and lik prediction error,  . Therefore, the expectation 

disconfirmation is a sum of the prediction error and expectation effect. We can define contrast and 
assimilation as follows. 

Contrast:        0   if 0  , 0   if 0   (3) 

Assimilation: 0   if 0  , 0   if 0   (4) 

Equation (1) indicates that the Bayesian estimate, post , always comes close to a peak of prior, pri , 

form a peak of the likelihood estimate of sensory stimulus, lik . We call the effect attractive influence 

of prior. The attractive influence alone involves assimilation as an expectation effect. The question 
then arises: How does contrast occur? 
Wei and Stocker (2012) proposed a neural encoding framework based on the efficient coding principal 
to create a direct link between prior and likelihood. According to the encoding framework, the 
Bayesian estimate shifts away from the peaks of the prior distribution. This phenomenon corresponds 
to the contrast pattern of the expectation effect. Efficient coding hypnosis (Barlow 1961) proposes that 
the tuning characteristics of a neural population are adapted to the prior distribution of a sensory 
variable such that the neural population optimally represents the sensory variable. In Wei and 
Stocker’s (2012), efficient coding defines the shapes of the tuning curves in physical space by 

transforming a set of homogeneous neurons using a mapping, 1F 
, that is, the inverse of the 

cumulative of the prior, F . Therefore, the likelihood shape is constrained by the prior distribution, 
showing heavier tails on the side of lower prior density. In other words, efficient encoding typically 
leads to an asymmetric likelihood function whose mean value is away from the peak of prior. The 
Bayesian estimate is determined by a combination of prior and shifted likelihood means, and it shifts 
away from the prior peak. We apply this efficient encoding to explain contrast in our model. Figure 1 
shows how the Bayesian estimate (perceived value), post , shifts from a  peak of the asymmetric 

likelihood function away from a peak of prior. We call the perceptual shift repulsion influence. The 
repulsion influence increases as the distance between prior distribution and peak of likelihood, that is, 
prediction error,  , increases, because the extent of asymmetry of likelihood increases away from 
peak of prior.  
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Figure 1. Contrast effect caused by the asymmetric likelihood function based on efficient 
coding 

Figure 2 summarizes our hypothetical model of perception. Based on the efficient encoding principle, 
prior changes the shape of the likelihood function asymmetry while encoding the sensory stimulus of 
the physical variable,  , as a firing rate of the neuron population, R . The Bayesian decoder integrates 
the prior distribution, ( )P  , and asymmetric likelihood function, ( | )R  , and forms posterior 
distributions. As a result, we perceive a peak of the posterior as an estimate of the physical variable, 
that is, perception.  

 

Figure 2. Hypothetical model of perception involving prior expectation 

2.2 Three factors of expectation effect: prediction error, uncertainty, and external 
noise 

Repulsion influence increases as the prediction error increases, due to asymmetry of the likelihood 
function. Repulsion influence involves contrast. Thus, the prediction error is a factor that decides a 
condition of the expectation effect.  
We assume two more factors of the expectation effect: external noise and uncertainty. The shape of 
the likelihood function is affected by the noise of the external stimulus. An external noise modifies the 
shape of the likelihood function by convolving it with noise distributions. Symmetric external noise 
distributions do not change the mean of likelihood, but they increase its overall width. Thus, the 
attractive influence of prior relatively increases, and the Bayesian estimate, post , shifts toward the 

peak of prior. If the attractive influence of prior exceeds the repulsion influence of asymmetric 
likelihood, the expectation effect may change into assimilation from contrast.  
Variations of prior distributions are indicators of prediction uncertainty. The variation in prior impacts 
the attractive influence. In the Bayesian estimation, a small variation in prior means certain prediction 
and involves a strong attractive influence. Conversely, a big variation in prior means uncertain 
prediction and involves weak attractive influence. Thus, we define the expectation effect,  , as a 

function of three factors: prediction error,  ; variation of prior (uncertainty), 2
pri ; and variation of 

external noise, 2
noise .  

 2 2,  ,   noiseprif     (5) 
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3 NUMERICAL SIMULATIONS OF EXPECTATION EFFECT 

3.1 Method 

Using the equation for expectation effect, we conduct a computer simulation to investigate the effects 
of the three abovementioned factors on the expectation effect. We focus on the conditions of contrast 
and assimilation and the extent of the expectation effect. We use normal distributions for prior, 
homogeneous likelihood, and posterior. We choose the following as conditions of the simulation 
parameters: prediction error of 100 steps; uncertainty, 2

pri , of ten steps within [50, 200]; and external 

noise, 2
noise , of ten steps within [5, 50]. The standard deviation of homogeneous likelihood is set as 

0.04. We calculate the expectation effect using Equation (5) for all combinations of the 
abovementioned conditions for the three factors. We use MATLAB® to conduct the simulations. 

3.2 Effects of prediction error, uncertainty, and external noise on expectation effect 

Figure 3 shows an example of the simulation result of the expectation effect as a function of the 
expectation error. Each line represents a condition of uncertainty (small: 80, big: 90) and external 
noise (small: 15, big: 20). A positive value represents contrast, and a negative value, assimilation. 
Figure 3 reveals three findings.  
1. The expectation effect functions as an assimilating effect when the expectation error is small. 

As the expectation error increases, the expectation effect increases and changes to the 
contrasting condition. Around the peak of prior, where the prediction error is small, the shape of 
the likelihood function was close to symmetric, the repulsion influence was small, and the 
attraction influence of prior is dominant. Thus, assimilation occurs. As the prediction error 
increases, the extent of the likelihood asymmetry increases, and the repulsion influence 
increases. Thus, the expectation effect shifts to the contrast condition.  

2. The extent of the expectation effect, | | , is bigger when uncertainty is lower for both 
assimilation and contrast. With respect to assimilation, the attractive influence of prior increases 
in the Bayesian estimation as the variation of prior (uncertainty) decreases. On the other hand, 
the repulsive influence increases from a certain value of prediction error as the variation of prior 
decreases. In other words, certain predictions involve a sharp expectation effect regardless of 
the condition (contrast or assimilation). 

3. The prediction error at which assimilation changes to contrast increases as the external noise 
increases. External noise weakens the repulsive influence. In the Bayes estimation, the attractive 
influence of prior becomes stronger than the repulsive influence of likelihood. Thus, the area of 
assimilation in the prediction error increases when the external noise exceeds prediction error 
and uncertainty. 

 

Figure 3. Simulation result of expectation effect as a function of expectation error for 
different conditions of expectation uncertainty and external noise 
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We observe the abovementioned trends for all possible combinations of conditions for uncertainty and 
external noise. We also observe special cases wherein patterns of only contrast and only assimilation 
occur. Figure 4 shows contours of prediction errors when assimilation changes to contrast for all 
combinations of uncertainty and external noise. The prediction error, the z-axis, is normalized between 
zero and one. Zero of the contour represents a case where only contrast occurs, whereas one of the 
contours represents a case where only assimilation occurs. As Figure 4 shows, the upper left-hand side 
of the figure, where uncertainty is high and external noise is small, denotes cases where only contrast 
occurs. In this area, the repulsive influence of asymmetry likelihood is dominant compared to the 
attractive influence of uncertain prediction. On the other hand, the area on the lower right, with low 
uncertainty and big external noise, shows only assimilation. The attractive influence of prior is 
dominant for certain predictions compared to the repulsive influence, which is weakened by the 
external noise.  

 

Figure 4. Contours of expectation errors when assimilation shifts to contrast for different 
conditions of uncertainty and external noise 

4 EXPERIMENT 

4.1 Method 

To validate the simulation result shown in Figure 3, which is based on the hypothetical model, we 
conducted an experiment with participants using the SWI as a case of the expectation effect. We 
manipulated prediction error, uncertainty, and external noise as experimental factors of the expectation 
effect. For each condition, we obtained responses of participants with respect to perceptions of weight 
and evaluated the extent of weight illusions as expectation effects. We presented participants with 
pairs of cubic metal objects. The objects in each pair had identical weights but different sizes. We 
asked participants to compare the weights and obtained their responses for the difference in weights. 
We used the perceptual difference of weight as the extent of the expectation effect.  

Control of prediction error  

According to the SWI, human beings perceive that a smaller object is heavier than a larger one 
although both objects may weigh the same. This illusion can be viewed as a contrast of the expectation 
effect, in which the perception of difference between the weight predicted by the object’s size and its 
actual weight, namely the prediction error, is exaggerated. However, our simulation result in Figure 3 
shows that assimilation, an opposite effect to contrast, occurs when the prediction error is less than a 
certain value. To validate the simulation results for various conditions of assimilation and contrast, we 
controlled the prediction errors in the experiment. As Figure 5 shows, we prepared pairs of objects, 
called target and reference. Participants evaluated the weight of the target by comparing it with that of 
the reference. The target was bigger than the reference for each pair. We adjusted both the actual 
weights to be the same. We prepared different weights for each pair to control the extent of the 
expectation error (difference between the predicted and actual weights) ((c) in Figure 5). In other 
words, the differences in size between the target and reference differed between the pairs.  
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Figure 5. Method for manipulating expectation error. Participants compared weights of the 
reference (a) and target (c). The difference between the predicted weight (b) and actual 

weight (c) of the target were controlled as prediction errors for each reference–target pair. 

Control of uncertainty and external noise 

To control uncertainty of visual predictions, we used a fogged glass so that transparency between the 
participants and target object was manipulated. We assumed that fuzzy visual images of the targets 
would increase the uncertainties of size and weight predictions. To control the external noise of 
somatosensory sensation while lifting an object, we asked participants to add a weight to the wrist 
he/she used for lifting the samples. According to the Weber–Fechner Law, the difference threshold 
increases as the intensity of stimulus increases. We assumed that the additional weight of each 
participant’s wrist serves as the external noise of weight perception due to the increasing difference 
threshold.  

4.2 Material 

We prepared ten solid cubic shapes made of duralumin (A2017) as a set of reference samples. The 
weights of the reference samples ranged from 350 g to 1250 g. Their sides were 50 mm to 76.5 mm 
long. For the target samples, we prepared hollow cubes made of duralumin (A2017), with sides of 80 
mm. We inserted additional weights into the hollow cubes so that weights of both samples were 
identical for each pair. We attached a wire to the top of each target and reference sample and hung 
them from a steel framework to straighten the wires without tension. We placed a ring in the middle of 
each wire to enable the participants to lift the samples using their index fingers.  

4.3 Participants 

Fifteen (twelve male and three female) volunteers aged 21 to 24 years served as experiment 
evaluators. They were undergraduate or graduate students studying mechanical engineering at the 
University of Tokyo. All the participants were physically healthy.  

4.4 Procedure 

The participants were invited individually into the isolated test room. Each participant was seated on a 
chair in front of the framework, which was set on a table. After obtaining informed consent, the 
participants received written instructions for the procedure. Before starting the comparison of the 
pairs, we asked the participants to lift up the ten reference samples with their index fingers using the 
wired ring in order to perceive the density of the duralumin. After the learning session, participants 
compared the weights of the target and reference samples under four different combinations of 
external noise and uncertainty (Table 1). To simulate the condition of big uncertainty (B and D in 
Table 1), we put a fogged glass between the target and participant so that the visual image of target 
was fuzzy. For the big external noise condition (C and D in Table 1), a participant added a weight to 
the wrist he/she used for lifting the samples. For each condition, we randomly presented each pair of 
the ten pairs of the target and reference samples with identical weights. We asked participants to 
alternately lift the target sample and reference sample with the index finger of the dominant arm using 
the wired ring. After they had lifted both samples, we asked them to rank the target weight as “very 
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much heavier,” “heavier,” “kind of heavier,” “almost the same,” “kind of lighter,” “lighter,” and “very 
much lighter” in comparison to the reference sample in that pair. We repeated the paired comparisons 
of sample pair weights for all ten pairs for the four conditions.  

Table 1. Experimental conditions regarding uncertainty and external noise 

  External noise 
  Small Big 

Uncertainty Small A C 
Big B D 

4.5 Data analysis 

We used the participants’ responses regarding the relative weights of the target samples in comparison 
to those of the reference samples as an index of the expectation effect. As explained previously, the 
physical weight of the target and reference samples in each pair were identical. If the response was 
“almost the same,” we can say that no expectation effect was observed. Due to the combination of 
learned density of the material and the visually estimated volume, all the target samples were actually 
lighter than the expected weight, whereas the reference samples, which were solid and had congruent 
expected and actual weights, were heavier. Thus, participants’ responses that the target samples were 
heavier than the reference samples denote contrast. Conversely, participants’ responses that the target 
samples were lighter than the reference samples represent assimilation. We compared the participants’ 
responses of the expectation effect for different combinations of prediction error, uncertainty, and 
external noise. We compared the simulation results (Figure 3) and experimental results in order to 
validate the appropriateness of our hypothetical model of the expectation effect.  

5 RESULTS 

5.1 Effect of prediction error on expectation effect 

Figure 6 shows the averaged responses of the participants regarding the relative weight of each target 
sample for four combinations of uncertainty and external noise. A positive value shows how much 
heavier the target (smaller object) was than the reference (bigger object), whereas the negative value 
shows the opposite. In other words, the positive value represents contrast, and negative value 
represents assimilation. The horizontal axis denotes differences between the expected weight ((b) in 
Figure 5) and the actual weight of each target, that is, the extent of prediction errors for each pair. The 
result shows that under all combinations of uncertainty and external noise, the expectation effect began 
with assimilation and then shifted to contrast as the prediction error increased. This trend corresponds 
to the simulation results shown in Figure 3. As we hypothesized, assimilation occurred in the presence 
of small prediction errors, which contradicts the idea put forth by the SWI.  

 

Figure 6. Experimental results of expectation effects as functions of expectation error for 
each condition of uncertainty and external noise. Each bar represents the average 

responses of the relative weight of each target. The error bars denote standard errors. 
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5.2 Effects of uncertainty and external noise on expectation effect 

We compared expectation effects for different conditions of uncertainty and external noise. For each 
prediction error, we conducted a two-way repeated measure ANOVA with uncertainty and external 
noise as independent variables and the response of the relative weight of the target sample as the 
dependent variable for each target sample. The results indicate statistical significance at the prediction 
errors of 180 g for assimilation and of 780 g for contrast.  
With respect to the prediction error of 180 g (assimilation), the main effects of uncertainty [F = 2.25, p 
= 0.16] and external noise [F = 0.38, 0.55] were not significant. However, we observed marginally 
significant interaction between uncertainty and external noise [F = 2.92, p = 0.1]. Figure 6 shows a 
prominent negative response, namely assimilation, for small uncertainty and small noise at a 
prediction error of 180 g. We also observed a similar trend at 280 g (Figure 6). We compared the 
responses for the prediction error of 180 g for different conditions of uncertainty and external noise 
using Bonferroni-corrected paired comparisons. We found that the negative response (assimilation) for 
small uncertainty and big noise was significantly bigger than the response for big uncertainty and 
small noise. For the prediction error of 780 g (contrast), we found significant main effects for both 
uncertainty [F = 5.18, p = 0.0391] and external noise [F = 7.88, p = 0.0140]. The interaction between 
uncertainty and external noise is not significant [F = 0.25, p = 0.62]. Figure 7 shows the comparison 
of average expectation effects for different levels of uncertainty and external noise. We observed that 
smaller uncertainty involves a significantly bigger expectation effect, namely contrast, than bigger 
uncertainty. Regarding external noise, smaller noise involves significantly bigger contrast than bigger 
noise.  

 

Figure 7. Expectation effect for each condition of uncertainty and noise when the 
expectation error is 780 g 

6 DISCUSSION AND CONCLUSION 

Both the results of the computer simulation (Figure 4) and the experiment using the SWI (Figure 6) 
show that prediction error affected the extent of the expectation effect and worked as a factor of either 
the assimilation or the contrast condition. The pattern of expectation effect shifted from assimilation to 
contrast as the prediction error increased. This correspondence between the simulation and experiment 
supports our hypothesis, namely that the prediction error increases the likelihood repulsive influence 
against prior attractive influence during Bayesian estimation (decoding). We discuss the meaning of 
the psychological phenomenon from an ecological viewpoint. Contrast exaggerates expectation 
disconfirmation so that human beings pay attention to novel stimuli with surprise (Itti and Baldi 2009) 
and try to gain information from unexpected phenomena. This biological function may provide an 
opportunity to learn novel information and renew prior knowledge, that is, prior distributions. 
However, due to limitations of cognitive resources, such as short-term memory content and energy, 
human beings cannot pay attention to each unexpected phenomenon. Assimilation may work as a filter 
to select which unexpected phenomena should be paid attention to. In other words, human beings 
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ignore marginal prediction error. This biological function is reasonable in that it saves the energy 
resources of the human brain.  
The second hypothesis was that the trend in the relationship between the expectation effect and 
prediction error depends on uncertainty and external noise. The simulation results in Figure 4 show 
that uncertainty decreased the extent of the expectation effect and external noise increased the 
assimilation due to the decreasing repulsive influence during the Bayesian estimation. The 
experimental results supported the simulation result. The condition of small uncertainty with big 
external noise involved prominent assimilation. Figure 7 shows that the extent of contrast with smaller 
noise significantly exceeded that with bigger noise. Smaller uncertainty involved a significantly bigger 
contrast than bigger uncertainty. We can explain these phenomena with our hypothetical model as 
follows. Prior distributions of low variation, namely certain predictions, attracted a Bayesian estimate 
against the likelihood function of noisy stimuli when the prediction error and likelihood asymmetry 
are small. The repulsive influence decreased as uncertainty and external noise increased. The contrast 
weakened with big uncertainty and big noise. Human beings rely on their prior distributions when the 
external stimulus is noisy. Certain prior predictions may increase this dependency, and thus, the extent 
of assimilation becomes prominent. On the other hand, human beings should pay attention to big 
prediction errors of certain predictions and clear external stimuli. Therefore, contrast increased with 
small uncertainty (certain prediction) and small external noise (clear stimulus). 
This discussion suggests that our simulation model of the expectation effect is reasonable from the 
viewpoints of both neuroscience and ecology. In general, one of the biggest advantages of computer 
simulation is its ability to estimate responses of huge parametric space including untouched area. 
Traditional modeling based on experiments with human subjects always suffers the limitation of 
sample size regarding the stimuli that participants can process efficiently during evaluation. The 
proposed simulation model can potentially apply estimations of user perceptions of physical properties 
to design a product during the early design stage.  
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