
ICED15  

 

 

 

PHYSIOLOGICALLY BASED SEGMENTATION OF DESIGN 
PROTOCOL 
Nguyen, Philon; Nguyen, Thanh An; Zeng, Yong 
Concordia University, Canada 
 

Abstract 
The measure of a design problem’s hardness is a window into human intelligence. We propose a new 
measure of problem hardness based on the transient microstate percentage of EEG signals. Based on 
the heuristic that different segments of design protocol data have different perceived hardness, we use 
this transient microstate percentage to segment design protocol data into domain-valid segments. 
Currently, two main techniques exist to analyze design protocol data: simultaneous thinking aloud and 
retrospective protocol analysis. Our method based on physiological measurements (EEG) mitigates the 
strengths and weaknesses of both methods. It was able to classify some segments as expected and 
discover new segments. Using EEG to solve this problem is a typical inverse problem where a thought 
process is reconstructed from potential-valued signals of the brain. We discuss limitations and 
challenges of such an approach. 
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1 INTRODUCTION AND BACKGROUND 

In the movie HER (2013), Theodore is a lonely writer who develops an unlikely relationship with his 
operating system, Samantha. One of the scenes that impressed viewers occurs while Theodore is 
playing a next-generation immersive video game: 
 

THEODORE (playing a video game): I have been going in circles for an hour… 
SAMANTHA OPERATING SYSTEM  (giggles): Ok… You have got… You are just not being very 
optimistic… You are being very stubborn right now… Stop walking the structure… It is the other 
way! 
THEODORE: Hum…  
SAMANTHA OPERATING SYSTEM: Thank you… thank you… The tunnel on the left is the only 
one we haven't tried… 
THEODORE:  No, I think that's the one you sent me where I suddenly fell down the pit… 
SAMANTHA OPERATING SYSTEM: OK… I don't think so… 
THEODORE: Hum… Yeah… This is different… 

 
What impressed most computer scientists, engineers and video game fans is the way the AI’s in the 
movie were able to sense the emotions of their users and the environment they are evolving in. In the 
conversation above, the Samantha OS is clearly sensing Theodore’s perception of the game’s hardness 
and interacting with him based on this evoked hardness. One of the problems posed by the Samantha 
OS paradigm is the measurement of a problem’s perceived hardness. Measuring a problem’s perceived 
hardness is effectively a window into human intelligence and ability.  

1.1 Design Protocol Data Analysis 
Two techniques are known for the study of design protocol data: simultaneous thinking aloud and 
retrospective protocol analysis. In design, simultaneous thinking aloud is the most popular method to 
study design cognition. These techniques are discussed in Ullman, Stauffer & Dietterich (1987), Enis 
& Gyeszly (1991), Gero & McNeill (1998), McNeill, Gero & Warren (1998), Kan & Gero (2008). On 
one hand, simultaneous thinking aloud is good at characterizing temporal elements of the design 
process. However it may interfere with the design process itself. On the other hand, retrospective 
protocol analysis does not impact the design process itself but may suffer from imprecisions. Both 
methods aim at segmenting the design protocol data into microstrategies such as problem analysis, 
solution synthesis and evaluation. Physiological methods constitute a third option. Physiological 
methods are purely quantitative and may provide additional insight where investigative and descriptive 
techniques do not. They rely on metrics of the human mind and body and can provide a powerful 
retroactive analysis tool that is non-invasive to the design process while being precise if interpreted 
properly. 
Recently, we have developed a hands-free purely telepathic measure of a problem’s perceived 
hardness using electroencephalograms (EEG). We developed a measure called the transient microstate 
percentage and showed that it directly relates to the perceived hardness of design problems. Using this 
evoked hardness, we segmented the design protocol data accumulated by the Design Lab at the 
Concordia Institute for Information Systems Engineering in a series of experiments conducted to 
measure mental effort in the design process. These experiments are described in Nguyen (2013) and 
Xu et al. (2014). Subjects were asked to solve design problems of varying difficulty while having their 
EEG monitored and their solution recorded on a touchpad. 
In the field of EEG data analysis, microstate segmentation is being increasingly discussed. Microstates 
are sub-second quasi-stable configurations in the EEG scalp field maps that rapidly change to another 
quasi-stable configuration. They are described in the literature as being the atoms of thought. 
Significant advances were made in the field through the work of Koenig et al. (1999,2002), Lehman et 
al. (1971,1987), Pascual-Marqui et al. (1995) and Blankertz et al. (2010). 

1.2 Measuring the Hardness of Design Problems 
Next generation CAD/E systems are being studied and aim at incorporating new dimensions such 
as collaboration, conceptualism, creativity, cognitivity and environment-awareness. These are 
discussed in Goel et al. (2012) and Zeng & Horváth (2012). 
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A fundamental aspect of this endeavor is to be able to measure the hardness of a design problem, 
whether it be perceived or evoked. The perceived hardness of a design problem is effectively a 
window into human ability. As a parameter in a Human-Computer Interface (HCI), it becomes a key 
component of a subsystem’s interactivity. As subsystems become more collaborative, measuring 
design task hardness becomes a recurrent problem.  
The traditional computational approach to measure the hardness of a problem is to measure the 
complexity of the underlying algorithm used to solve the problem. In the context of design, the notions 
of hardness and creativity are also related. Nagai & Noguchi (2003) report a set of experiments that 
link the difficulty of keywords describing design problems to the perceived hardness of the problem. 
An assumption about cognitive loads and their impact on creativity was proposed in Zeng (2005) and 
was studied by Sun & Yao (2012). On the other hand, Dinar et al. (2014) propose an extensive survey 
of methods used to analyze design protocol data. Concepts such as problem iteration, the role of 
sketches, protocol data encoding, fixation, mimetism and the usage of fMRI technology are surveyed.  
At least four approaches to measuring the hardness of design problems can be found: the axiomatic 
approach, the conceptual approach, empirical approaches and the physiological approach. Axiomatic 
approaches such as those based on Design Axioms have been proposed and are being studied by Suh 
(1990) in the context of functional requirements and systems design processes. Following Suh’s 
design axioms, bad designs do not maintain the independence of the functional requirements and do 
not minimize the information content of the design. The hardness of a design task specification can 
then be understood in terms of the two axioms. Conceptual approaches such as those based on the 
Recursive Object Model (ROM) have been proposed by Zhu et al. (2007) and Zeng (2008) to measure 
mental effort and stress. Experiments show that information encoded using a ROM diagram is more 
effective than natural language. Other conceptual methods surveyed in Dinar et al. (2014) are based on 
P-Map and the FBS model (Function-Behavior-Structure). Empirical approaches are based on direct 
experimentation and observation. They typically observe sequences of events and interaction. The 
physiological approach is an emerging method (cf. Nguyen & Zeng (2010-14)). 

1.3 Physiological Methods 
Recently, physiological approaches have been devised to study the hardness of design problems. 
Heart-rate variability and task hardness have been experimented with by Moriguchi et al. (1992) in the 
context of medical research and Nguyen & Zeng (2014) in the context of design sciences. Tang & 
Zeng (2009) propose to measure movements (kinesics) to parameterize problem hardness and mental 
effort. The approach taken in this paper follows the momentum gained in Nguyen & Zeng (2010, 
2012, 2014). Kakizaki (1984) showed that the amplitude of EEG alpha and beta bands increased when 
subjects were performing hard subjectively rated tasks. Quantitatively, the next step was to use 
microstate analysis to measure physiological phenomena that occur when solving design problems of 
varying hardness. Physiological methods have the benefit of being hands-free and purely quantitative. 
They lend themselves to be utilized in engineering systems and devices. 
Immersive Brain-Computer Interfaces (BCI) are not pure science-fiction and they have been well-
studied in the past decades in the context of not only next-generation immersive video games, but also  
medical devices, smart home design, CAD/E systems and design sciences. Such applications can be 
found in Graimann et al. (2010), Carabalona et al. (2012) and Nguyen & Zeng (2010-14). The 
importance of measuring environment-based parameters as discussed in Zeng (2004, 2011) for the 
development of these next-generation smart systems is non-negligible. The idea is to layer traditional 
AI and machine-learning techniques with human-centric dimensions such as collaboration, 
conceptualism, creativity and cognition stated in Goel et al. (2012). It can be noted that current 
commercially available BCI headsets are able to measure mental stress and strain in addition to eye 
and head movements using built-in accelerometers and algorithms. 
   
The rest of this paper is organized as follows: Section 2 briefly reviews EEG data analysis and 
microstate segmentation. Section 3 discusses the segmentation of design data protocol data using the 
transient microstate percentage as a discerning metric. Section 4 discusses experiments that were 
performed to measure a problem’s perceived hardness and its application to design protocol 
segmentation. Section 5 proposes a discussion and Section 6 concludes and proposes future work 
venues. 
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Figure 1. Segmentation of an EEG signal using the P2ML algorithm (left) and smoothed 

segmentation using the regularized P2ML algorithm (right). The microstates to which each 
segment is related are shown above and below 

2 MICROSTATE SEGMENTATION AND REGULARIZATION 

Electroencephalograms are a sequence of potential values measured at different electrode positions (cf. 
Michel et al. (2009)). At a given time t, the number of potentials corresponds to the number of 
electrodes used in the EEG apparatus. The mean-normalized average of these electrode values is called 
the global field power, a set of which yields a global field power curve. 
Another important feature of EEG signals are the microstates (cf. Michel et al. (2009)). Microstates 
are sub-second quasi-stable patterns in the scalp field potential values of an EEG. An EEG typically 
alternates between different microstates. The P2ML algorithm proposed by Pascual-Marqui, Michel 
and Lehman (1995) algorithm is a popular method used to compute these   microstates and to find a 
segmentation of an EEG according to the computed microstates.  
For some EEG potential values at time t, Vt∈V and the kth candidate microstates Mk∈M, the P2ML 
algorithm optimizes the following objective function: 

 
The objective function effectively clusters scalp field potentials into K clusters with centroids given by 
their corresponding microstates. Finding the microstates amounts to iterating the objective function. 
The result of the P2ML microstate segmentation algorithm is a sequence of labels corresponding to the 
microstate labels. For example, if 4 microstates are used, the result could be a sequence 
S=(1,1,1,1,2,3,3,3,3,4,4,4,1,1,1,1,…). It can be noted that the 5th value of the sequence is a 2 and 
corresponds to a low-duration flashing microstate. Such   low duration microstates have been shown to 
have significant physiological meaning by Koenig et al. (1999) and Koenig et al. (2002). To address 
the smoothness of the microstate segmentation, Pascual-Marqui et al. (1995) developed a regularized 
P2ML microstate algorithm by introducing a smoothness penalty factor in the objective function of 
P2ML. The smoothness penalty factor is defined as: 
 

𝐸𝐸𝑡𝑡 = � 𝛿𝛿
𝑡𝑡+𝑤𝑤

𝑖𝑖=𝑡𝑡−𝑤𝑤

(𝑆𝑆𝑖𝑖 ,𝑛𝑛),    𝑛𝑛 = 1, … ,𝐾𝐾 

 
(2) 

where δ is the (0,1)-Dirac delta function and w is a sliding window length defining a window of length 
2w. The regularized P2ML objective function is then given by: 

 arg max
𝑘𝑘

{(𝑉𝑉𝑡𝑡𝑇𝑇 ∙ 𝑀𝑀𝑘𝑘)2}                                                            
(1) 

 

arg min
𝑘𝑘
�
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2�

2𝑒𝑒(𝑁𝑁 − 1)
− 𝜆𝜆𝐸𝐸𝑡𝑡� 

 
(3) 
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Figure 2. (a) shows the time-varying transient microstate percentage of EEG signals of a 

subject who was asked to perform a set of tasks over 30 minutes. In (b), the transient 
microstate percentage curve was classified into eyes-closed/very easy segments (lighter 
gray) easy segments (light gray), average segments (gray) and hard segments (black). A 

trending curve was added. In (c), histograms were computed. Lower microstate percentages 
correlated with easier tasks while higher microstate percentages correlated with harder 
tasks. In (d), the transient microstate percentage was computed on a subject with eyes 

closed using different window sizes. The percentage shows stability with respect to window 
size 

where e is an error value and λ a smoothness penalty parameter. Given some appropriate 
regularization parameters, the resulting smoothed segmentation could then be 
(1,1,1,1,1,3,3,3,3,4,4,4,1,1,1,1,…). The low-duration flashing microstate is then effectively replaced 
by the microstate that incurs the smallest smoothness and distance penalty. Examples of microstates 
are computed using the regularized and non-regularized P2ML algorithm in Figure 1. 

3 PHYSIOLOGICALLY BASED SEGMENTATION 

While microstate segmentation effectively segments an EEG, the problem of segmenting design 
protocol data stems from another application domain. The heuristic we use to perform the 
segmentation of design protocol data is that the expected perceived hardness of two different subtasks 
is different. We therefore segment the protocol data into windows of a given time length and aim at 
measuring the hardness of these subtasks to distinguish them. Adjacent segments of similar measured 
hardness are then considered to be part of the same subtask. Obviously, this is a necessary condition to  
make a proper segmentation, which may result in a segment consisting of different types of activities. 
Sufficient conditions for the proper segmentation will be studied in our further research. 
We propose a physiological approach to measuring this perceived hardness, based on which the 
hardness of a task is given by the transient microstate percentage. The transient microstate percentage 
is given by: 
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Figure 3. Segmentation of design protocol video based on the transient microstate 

percentage. A window size of 5 (25 seconds) was chosen. Values in the window were 
averaged. The resulting values were clustered into 4 clusters 

 
 

𝐻𝐻(𝑉𝑉1, … ,𝑉𝑉𝑁𝑁) =
𝑛𝑛𝑛𝑛𝑛𝑛𝑆𝑆𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑆𝑆𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛

𝑁𝑁
 (4) 

 
The number of segments is given by the number of discontinuous segments obtained using the P2ML 
algorithm while the number of smooth segments is given by the number of segments obtained using 
the regularized P2ML algorithm. For example, the segmentation (1,1,1,2,2,3,4,1) has 5 discontinuous 
segments. In Figure 1, the P2ML segmentation has 37 discontinuous segments while the regularized 
P2ML segmentation has 22 discontinuous segments. 
The transient microstate percentage effectively measures the number of short duration flashing 
microstates. These microstates were determined in the related literature to be significant 
physiologically and were characterized as being the atoms of thought. This number is always positive 
and can be shown experimentally to camp between 1% and 20% on average. A clear gap can be found 
between the transient microstate percentage of a subject who was asked to keep his eyes closed and a 
subject who was asked to solve a design problem. We posit that tasks perceived to be easy are shown 
to have a lower transient microstate percentage than tasks perceived to be hard. 
Once the transient microstate percentage curve is computed on an EEG signal (typically a signal of a 
given sample size such as 2,500 samples), these values are aggregated into groups of windows (e.g. 5 
windows) and the data is clustered. Since the clustering algorithm is evaluating single values, no 
significant performance penalty is incurred. Different segments are then defined as clusters with 
different cluster neighbors.  

4 EXPERIMENT AND ANALYSES 

The data that was used in this study contained video sequences of a subject who was asked to perform 
a set of design tasks on a touchpad while having his/her EEG monitored. After each task, the subject 
was asked to grade the level of difficulty of the task. The experiment lasted around 30 minutes. Details 
of experimental setting and experimental tasks can be found in Nguyen (2013) and Xu et al. (2014). In 
summary, the subjects were asked to alternate between 2 types of tasks: answering multiple choice 
questions on design problems that presented different alternatives to solve a given problem and 
designing a solution to a design problem by drawing a sketch. After each tasks, the subjects were 
asked to rate the hardness of the problem as they perceived it. 
In a first set of analyses, we computed the transient microstate percentage of longer EEG epochs by 
using the P2ML and regularized P2ML algorithms for the subject. Figure 2(a) shows these 
percentages. The transient microstate percentage is a stronger figure than the number of transient  
microstates because it can be used when two sequences do not match in length and it can be shown to 
not be sensible to sequence length. 
In a second set of analyses, the time-varying transient microstate percentages of the EEG sequence 
was used to segment the task execution video obtained on a touchpad into subtasks. The dataset used 
in Figure 2(a) is the same as the dataset used in Figure 2(b) and was obtained by measuring the EEG 
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of a subject who was asked to perform various tasks for a duration of about 30 minutes. The epoch of 
30 minutes was then divided into windows of 2,500 samples at a sample rate of 500 samples per  

 
Figure 4. (a) displays a typical answer question segment, (b) a read question segment, (c) a 

design object segment and (d) a rate problem segment 

second and the transient microstate percentage of each window of about 2.5 seconds was computed. 
The transient microstate percentage curve was segmented into four categories: resting/very easy, easy, 
average and hard. Figure 2(c) shows that the very easy category peeks at a transient microstate 
percentage value of 0.025, the easy category at 0.045, the medium category at 0.065 and the hard 
category at 0.10. 
In a third set of analyses, we tested the stability of the transient microstate percentage with respect to 
the window size. We computed the transient microstate percentage of a subject with eyes closed over 
different window sizes. We expected that the transient microstate percentage remain within the same 
range. Figure 2(d) illustrates this analysis. 
In a fourth and last set of analyses, we compared the segmentation of the design protocol data obtained 
using transient microstate percentages with the actual video of the protocol data. These experiments 
are illustrated in Figure 3. 

5 DISCUSSION 

Our design protocol data was a set of videos taken from the touchpad on which subjects were asked to 
perform various design tasks of varying hardness. Screenshots of the experiment are shown in Figure 
4. The EEG of the subjects was monitored and, after each task, a short questionnaire on the perceived 
hardness of the task was handed. 
Such design protocols were a sequence of segments where the subjects were asked to keep their eyes 
closed and segments where the subjects were asked to perform tasks. 
By characterizing a segment of a design protocol dataset by its perceived hardness, we have 
effectively introduced a metric to perform the segmentation of these protocols using monitored EEG 
signals. Harder tasks have harder levels of transient microstate and easier tasks have lower levels of 
transient microstate. 
The transient microstate percentage of a subject with eyes closed typically ranges from near 0% to 4% 
while the transient microstate percentage of a subject who is asked to perform tasks ranges from 5% to 
18%. Easy tasks range in the lower spectrum while harder tasks range in the higher spectrum. 
When using the transient microstate percentage to segment design protocol videos, the accuracy was 
surprisingly high in detecting, within a given range, segments such as read question, rate 
question, design object and answer question. The think segment in the experiment was defined as a 
sequence in the video where the subject paused while designing an object or answering a question.  
More specifically, we noticed that the rate segments were classified as having high transient 
microstate percentage. Furthermore, design segments were classified on average as having larger   
transient microstate percentages. The design protocol data started and ended with an eyes closed 
segment. The first eyes closed segment was detected as having a low transient microstate percentage 
while the second segment had a mid- transient microstate percentage. This may be due to the fact that, 
following the 30 minutes experiment, the subject was not thoroughly resting. It was however properly 
segmented. Some expected segments were properly classified while others were not, which may be 
resulted from the fact that the proposed segmentation criterion (hardness) is only a necessary condition 
for a proper segmentation. Furthermore, unexpected segments were discovered, which may be because 
in conducting a design activity a designer may experience different levels of difficulty for the activity 
period. Like in most data mining approaches, false positives are to be expected. Table 1 summarizes 
the results of the design protocol segmentation for a series of experiments.  
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Table 1. Design protocol data segmentation results of a task lasting around 30 minutes. 
Bolded events were the events discovered by the segmentation algorithm while non-bolded 

events were expected. Segments marked with an asterisk were unexpected but made 
sense in the design protocol. 33 segments were discovered using the EEG-based method. 
32 segments were expected from a post-protocol analysis. EEG-based methods excel at 
discovering internal articulations in expected events. For example, after writing a solution, 

the subject decided to consult the experiment instructions and this segment was discovered. 
Furthermore, while designing particular objects, sub-object design was often discovered 

 
0:00 - Eyes closed 11:30 - Reads question 17:43 - Rates 21:40 - Reads 26:55 - Designs object 

4:20 - Reads question 11:55 - Reads (cont.)* 18:00 - Reads 22:20 - Answers question 27:20 - Designs object 
(cont.)* 

4:41 - Designs object 12:20 - Designs object 18:35 - Answers question 22:45 - Answers (cont.)* 27:45 - Rates 

6:05 - Adds object* 13:35 - Rates  19:00 - Answers (cont.)* 23:12 - Rates 28:10 – Reads question 

7:20 – Writes* 14:00 - Reads question 19:26 - Rates 23:30 - Reads question 28:35 – Answers question 

7:45 - Consults 
instructions* 

14:25 - Answers question 19:39 - Reads 23:46 - Design object 28:30 - Rates 

8:10 – Rates 14:50 - Answers (cont.)* 20:15 - Designs object 25:17 - Rates 29:00 - Eyes closed 

8:35 - Reads question 15:43 - Rates 20:40 - Designs (cont.)* 25:30 - Answers question 29:25 

9:25 - Answers question 16:30 - Reads 21:05 - Designs (cont.)* 26:05 - Rates 29:50 

9:55 - Evaluates 17:20 - Designs object 21:30 - Rates 26:30 – Reads question 31:05 

6 CONCLUSION 

In this paper, the transient microstate percentage is introduced as a new measure to assess problem 
hardness. Based on the heuristic that different tasks have different perceived hardness, we have 
effectively segmented design protocol datasets. These protocol datasets were segmented into eyes 
closed, easy, average and hard subtasks. Compared to traditional segmentation which depends on 
subjective judgment, the proposed EEG based method is more objective and less labor-intensive. 
Future work would involve alleviating our experimental dependency on subjective ratings.  
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