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1 INTRODUCTION 

The development of multi-technology systems requires designers from various disciplines to 
collaborate closely and establish a shared understanding of the problem and the emerging solution 
alike (Kleinsmann and Valkenburg 2008). This entails clarification of the requirements, central 
expected functions and their dependencies, as well as elaboration of different solution elements and 
their implementation (Frankenberger et al. 1998). Function modelling contributes to the development 
of a shared understanding in the design team as it addresses solution finding early in the process and 
on an abstract level (Chakrabarti and Bligh 2001). In particular, the combination of function modelling 
with (initial) modelling of a system’s structure is suggested to help with building this shared 
understanding (Shai and Reich 2004, Eisenbart 2014). However, a large variety of alternative function 
modelling approaches exist and are frequently incompatible as they address divergent contents and are 
based on varying schemes for reasoning about functions and potential solution concepts (Erden et al. 
2008, Eisenbart et al. 2012, 2013a, 2013b). While different scholars advocate establishing a shared 
function model that is used in addition to models used within disciplines to address this issue, others – 
including the authors of this paper – argue that providing an integrative model which aggregates 
disciplinary function modelling is of greater benefit. An integrative model allows designers from 
different disciplines and design contexts to relate between information relevant to them and others, 
which is expected to contribute to the development of a holistic, shared understanding of a system’s 
functionality. Two approaches that integrate particularly many relevant contents from function 
modelling across disciplines and combine them with a representation of the system structure are the 
Object Management Group Systems Modeling Language (OMG 2012, hereafter “SysML”) and the 
recently proposed Integrated Function Modelling (IFM) framework (Eisenbart et al. 2013c). The 
authors consider both amongst the most promising approaches for integrative function modelling and 
they are therefore further investigated in this paper. They differ fundamentally in how information is 
modelled: while SysML is a strongly formalised modelling language, the IFM framework is a flexible 
approach for representing and visually linking information in a matrix format. The presented research 
aims to compare both approaches and derive potentials for cross-fertilisation in order to combine their 
respective strengths.  
Sections 2 to 4 introduce both modelling approaches briefly and provide an initial comparison based 
on a review of relevant literature. Section 5 illustrates the application of both approaches by modelling 
an exemplary mechatronic system. The findings from literature review and practical application are 
consolidated in Section 5 to derive specific potentials for cross-fertilisation. Based on these insights, a 
conceptual adaptation of the IFM framework is proposed to improve its applicability (see Section 6). 

2 THE INTEGRATED FUNCTION MODELLING FRAMEWORK 

The IFM framework is intended to provide designers with an integrated, cross-disciplinary approach 
for modelling system functionality. Following Eisenbart (2014), functions are defined as an intended 
or already perceivable behaviour of a technical system intended to fulfil a task. In the IFM framework 
integration is facilitated through linking the specific contents prominently addressed within discipline-
specific function models (i.e. in abstract behavioural modelling) and is further complemented with 
initial system structural modelling. The IFM framework and its application are described in detail in 
Eisenbart et al. (2013c, 2014) and Eisenbart (2014). It consists of associated views as illustrated in 
Figure 1.  

 

 
 

 
 
 
 
 

Figure 1. The IFM framework 
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A central view (process flow view) represents the flow of transformation and interaction processes, 
which are central in function modelling irrespective of disciplines (Eisenbart et al. 2013a). The 
remaining views are linked to this central view and comprise of matrices representing information 
about the different entities in the framework and their interdependencies equivalent to Multi-Domain-
Matrices (MDM, see Kreimeyer and Lindemann 2011). Inherent entities centrally comprise of use 
cases, transformation and interaction processes, effects, states, operands and actors. Use cases 
represent different scenarios of applying the technical system for a specific purpose (e.g. fulfilling a 
goal, changing the state of the system or user, etc.). Transformation processes describe technical 
and/or human processes – realised by basic physiochemical effects – that result in a change of state of 
operands or actors. Operands are specifications of energy, material and signals. Actors comprise 
stakeholders (referring to any human or other animate being), technical (sub-)systems (which may be 
hardware and/or software) and parts of the environment that are actively or passively contributing to 
function fulfilment. Finally, interaction processes describe “cross-boundary” interactions between 
different actors jointly contributing to function fulfilment (see also Eder and Hosnedl 2008). The 
different views are briefly described in Table 1. Their adjacent placement (see Figure 1) supports their 
parallel development and allows verification of their mutual consistency across the entire framework. 
Furthermore, views are modular and may be added or omitted in order to allow for flexible adaptation 
of the framework to the specific demands of practitioners (resulting from diverse working sequences 
and rationales of different disciplines in different companies). This particular setup enables different 
disciplines to work flexibly with the individual views in different kinds of design projects (i.e. 
original, variant or adaptive design) and contribute to their iterative development during the solution 
finding process. 

Table 1.  Associated views in the IFM framework 
View Description 

Process flow 
view 

…qualitatively visualises the flow of sequential or parallel (interaction and/or transformation) processes related to a specific 
use case. For each use case an associated set of views is created. In the vertical direction, the process flow is visualised related 
to time. This matches to the flow of states in the associated state view. In horizontal direction, the process blocks are spread 
from left to right to enable a direct link to the actor view (see Figure 2). 

State view 
…represents the states from initial to final of operands and actors as well as their changes associated to the flow of individual 
processes. It can also be indicated if an operand or actor merely support a process without changing their own state.  

Actor view 
…indicates the involvement of one or more actors in the realisation of individual processes related to a use case. Involvement 
may be active or passive. Actors can be differentiated based on whether they – from the designers’ point of view – are part of 
the system or not, which further separates transformation from interaction processes (realised “cross-boundary”). 

Use case view 
…indicates the involvement of individual processes in the different use cases. It is intended to support analysis of 
dependencies between processes, which may hinder their parallel or sequential execution and thus the operability of use cases 
in which they are involved.  

Effect view 
…represents the effects, which enable individual processes and are provided by actors. For each process block in the process 
flow view, a separate effect view may be created, preferably using a similar representation. This allows for detailed analysis of 
the basic physiochemical effects that are affecting or contributing to the individual processes. 

Interaction 
view 

…uses a combination of matrices which map the specific bilateral impacts between actors and operands as well as their 
complementary contributions (or any other kind of dependency between them) in the realisation of use cases, associated 
processes etc. Additionally, information about the embodiment of specific bilateral impacts may be included. Hence, this 
view essentially results in an initial system structure or interface matrix of the system, respectively.  

 
Figure 2. Example of a process flow view (centre) for use case "prepare a cup of coffee" with adjacent 
use case view (upwards), actor view (downwards) and state view (left), adapted from Eisenbart (2014) 
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3 SYSML 

SysML is intended to offer a consistent and formalised way for representing (basically any kind of) 
information. The used formalism aims to improve clarity to the model users, thus – eventually – 
supporting model comprehension and communication between designers irrespective of their 
disciplinary background. Succeeding from UML, SysML is a so-called “visual modelling language” 
(Friedenthal et al. 2006). As such, it is generic in terms of what can be represented with it; however, a 
central set of models (typically referred to as “diagrams”) has been established over the years (see e.g. 
Weilkiens 2008). These allow for detailed modelling and analysis of requirements as well as a 
system’s structure and behaviour. Extensions to these diagrams are frequently discussed in literature to 
allow customisation to specific demands of the designers. The analysis presented here focuses mainly 
on the central diagrams proposed for abstract behavioural modelling (i.e. function modelling, as 
indicated above), which are briefly described in Table 2 (see Weilkiens 2008, Friedenthal et al. 2006).  
A variety of commercial and open-source software environments are available to support modelling 
using SysML. Information about entities modelled in the different partial models (i.e. the different 
diagrams) is typically stored in a meta-model serving as a database for the modelling process. While 
individual diagrams are separated from each other, the entities they represent can be re-used from the 
database. Hence, each diagram represents specific information, while they complementarily illustrate 
all available information about the system. Entities need to be defined once using a block definition 
diagram (see Table 2) to start with. 

Table 2. Central diagrams for function modelling proposed by Weilkiens (2008) 
Diagram Description 

Block  
definition  
diagrams  

…are used for definition purposes and modelling of relations between different entities. Any kind of entity may be modelled 
using a new block. Each block can be equipped with attributes (i.e. physical properties), operations (i.e. technical processes or 
activities), values, etc. These diagrams thus specify any relation between entities, including their mutual impacts and 
dependencies. Typically, this concerns modelling a system under development, any surrounding human being (such as users, 
referred to as “actors” in SysML) or peripheral technical systems. Each block can be further specified with a so-called 
internal block diagram. These may be used to detail the connections and parts inside the system as well as their usage (see 
e.g. Friedenthal et al. 2006). 

Use case  
diagrams  

…represent the use cases a system is associated with as well as different users, peripheral technical systems and their 
involvement within the use cases. Mutual connections among use cases (e.g. one use case including several others) may also 
be represented.  

Activity 
diagrams 

…represent the flow of processes performed by users, peripheral technical systems or the system to be developed (and/or its 
components) during the execution of a use case. Activity diagrams include all sequential, parallel and alternative processes, 
error scenarios, etc. to fully describe the devolution of a use case.  

Sequence 
diagrams 

…represent the interactions between all users, peripheral technical systems and the system to be developed during the 
devolution of a use case. Alternatively they can be used to represent individual, more complex processes, in detail. The 
involved users and technical systems are represented by so-called “lifelines”. They exchange “messages” and interact with the 
system as well as among each other. This essentially corresponds to a flow of operands (mostly information). Interactions are 
modelled chronologically from top to bottom. Interactions may evoke subsequent processes to take place, which can be 
modelled using an additional sequence diagram.  

State machine 
diagrams 

…are associated to one specific block in an (internal) block diagram. They describe the entity’s states and their changes 
during its life cycle. State changes are usually evoked by processes. These are referenced by a so-called “trigger” in the state 
machine diagram. 

 
Weilkiens (2008) proposes a sequence of modelling steps to be applied while generating the different 
diagrams. For abstract behavioural modelling, central use cases in the system’s life-cycle and the main 
involved actors are initially determined and represented in a use case diagram. The devolution of these 
main use cases can be modelled in an activity diagram, which illustrates the sequence in which the 
individual use cases may be executed in the different phases of the system’s life-cycle. Subsequently, 
for each of these use cases, the specific sequence of required processes is modelled in a separate 
activity diagram. In parallel, associated sequence diagrams may be generated to provide more detail. 
Finally, modelling the process flows for each use case may be further substantiated with state machine 
diagrams. Associated block diagrams can be used to represent the system’s structure. The different 
diagrams are to be iteratively refined. 

4 INITIAL COMPARISON 

IFM framework and SysML are initially compared based on the descriptions and publications cited in 
the previous sections, as well as insights from on-going research on the IFM framework by the authors 
of this paper and existing research on SysML including – but not limited to – Peak et al. (2009), Bone 
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and Cloutier (2010), and Pires et al. (2012). Here, the selected criteria for the comparison mainly focus 
on conceptual differences between the approaches that affect the actual application (see Section 5). 
To start with, differences were found regarding the addressed entities and their respective definitions. 
Considering function modelling, a fairly similar set of entities compared to the IFM framework is 
addressed in the standard diagrams proposed for SysML. The identified differences concern effects, 
which are usually absent in the standard diagrams introduced earlier, and stakeholders. Stakeholders in 
SysML involve external (groups of) human beings that have a general interest in the system under 
development, without necessarily taking part in function fulfilment. In addition, while in the IFM 
framework human beings explicitly can be part of the system under consideration (e.g. in a Product-
Service System), Weilkiens (2008) focuses on technical systems. Humans (e.g. users) are essentially 
considered interacting elements of the environment. In the following discussions, the terminology 
proposed for the IFM framework is used for both approaches to have a common basis.  
Concerning the modelling, a central difference is the strong formalism in the diagrams and their 
application in SysML in contrast to the large degree of freedom in applying the IFM framework. 
Further aspects discussed in the following include the specific area of application, software tool 
dependency, realisation of the linkage between different diagrams/views in the approaches, change 
management, as well as model and work partitioning. The findings are collocated in Table 3. 

Table 3. Initial comparison between SysML and IFM framework 

SysML IFM framework 
Area of application 

• Can support the whole design process, starting with requirements 
modelling over function modelling to structural (and 
parametrical) modelling;  

• Further provides links to typical system simulation tools used 
during detail design (thus wider in scope as the IFM framework).  

• Particularly focuses on modelling and analysing system 
functionality consistently coupled with initial system structural 
modelling (in the interaction view); 

• May be coupled with – but does not include itself – requirements 
modelling and early system simulation (see Dohr et al. 2014). 

Software tool dependency 
• In principle, diagrams may be created using any kind of graphic 

modelling tool (e.g. MS PowerPoint, Visio, etc.); for complex 
systems, use of an appropriate software tool is crucial: they 
provide means to reuse entities from the meta-model in different 
diagrams (as discussed in the previous section). 

• Software tools can support SysML formalism to be maintained. 

• Thus far, no software modelling tool for IFM framework existent; 
modelling may be performed using spreadsheet tools like MS 
Excel, while for less complex systems, matrices/views may be 
sketched by hand;  

• However, on-going research shows that implementation into a 
software tool can be well performed (see Dohr et al. 2014).  

Linkage between different diagrams/views 
• Uses a meta-model as database storing all information about 

entities and their relations (as described before), individual 
diagrams are used to represent specific information graphically; 

• Entities are allocated from meta-model into the diagrams, thus the 
meta-model provides the (logical) linkage between model 
elements represented in different diagrams. 

• The IFM framework particularly emphasises direct visual linkage 
of associated and adjacently placed views; 

• Inherent matrices share header rows and header columns, in order 
to facilitate traceability and linkage between contents of views 
(foreseen to facilitate analysis of their mutual consistency and 
ease gradual refinement/adaptation during the design process). 

Change management  
• (Provided, entities are correctly defined/allocated from the meta-

model into the diagrams) adaptations concerning same entities in 
one diagram, are automatically advanced to others; yet, entirety of 
caused effects (i.e. whether all affected entity relations will 
remain consistent) hardly verifiable (especially, in case diagrams 
partitioned to multiple designers/departments);  

• Change automatism is provided by – and thus depends on – the 
specific implementation in the used software tools. 

• Effects of changes made to entities and their relations in 
individual views can be directly visually traced by designers for 
each set of views through verification of consistency of associated 
rows/columns in adjacently placed views (see particularly 
Eisenbart et al. 2014). 

Model and work partitioning  
• Possibilities to partition the information to be modelled by 

different designers/departments with access right management 
(i.e. managing who has the right to see and change which specific 
information in the meta-model) 

• Intended for collaborative modelling;  
• Modelled information explicitly separated per use case, i.e. each 

set of associated views focuses on one use case only. 

5 MODELLING AN EXEMPLARY MECHATRONIC SYSTEM 

In this section the initial comparison is advanced based on the analysis of two models of a mechatronic 
system’s functionality and initial system structure as well as the experiences gained during their 
generation by the authors. One model is based on the IFM framework, while the other is based on the 
SysML formalism using the diagrams described in Table 2. The comparison focuses on the practical 
applicability of both approaches (that result from the discussed conceptual differences), in order to 
derive concrete potentials for cross-fertilisation and improvement, as the central aim of this research. 
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5.1 Function modelling of a quadrocopter 
The selected example is the AscTec Hummingbird, a self-stabilising, unpiloted aerial vehicle (a 
quadrocopter) that can be controlled using a remote control or a computer. The Hummingbird is 
considered suitable for the comparison as it provides diverse functionality, supports several use cases, 
and combines various engineering technologies. Seven main use cases can be discerned: initiating the 
quadrocopter, manipulating quadrocopter while flying, hovering, landing quadrocopter, replacing 
components, charging battery, updating firmware.  
Each of these use cases was initially modelled with SysML (using Eclipse/Papyrus). Modelling was 
mainly performed by a bachelor student in his final year with a background in mechanical engineering 
and mechatronics in collaboration with the remaining authors of this paper. Figure 3 exemplarily 
shows a selection of diagrams for modelling the use case manipulating quadrocopter while flying in 
SysML. It includes a few variant process flows in relation to the process of steering: the quadrocopter 
can be remotely controlled by a person, by a computer, by waypoint navigation, with or without GPS 
support. Variants in Figure 3 are represented as alternative paths in activity and sequence diagrams. 

  
Figure 3. Examples of SysML diagrams for use case "manipulating quadrocopter while 

flying" 
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Subsequently, the quadrocopter was modelled using the matrix-based concept of the IFM framework 
(see Figure 4). Modelling was performed using MS Excel. As the IFM framework and SysML share 
the concept of use case, these and central, inherent process steps are equal in the IFM framework and 
the earlier modelled SysML diagrams. This circumstance, however, prevents a direct quantitative 
comparison of the time needed for modelling with both approaches as use cases and central processes 
were now already known. For modelling variant process flows for one particular use case, alternative 
sets of associated views were generated for each alternative, using different process flow views. Seven 
alternative sets of views were generated for the use case manipulating quadrocopter while flying.  

 
Figure 4. Exemplary sets of views in IFM framework for use case "manipulating 

quadrocopter while flying" (total amount of sets of views for this use case is seven, based 
on alternative process flows) 
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5.2 Main observations  
One particular aspect to be compared is the usability of both approaches for function modelling of the 
quadrocopter. The comparison focuses on the training efforts, modelling efforts (not including gross 
modelling time, as discussed before, thus mainly referring to the operations required for generating the 
final (set of) models), the usability of the inherent formalism, adaptability of the approaches, model 
readability and change management (i.e. revising the model, e.g. as new information is gained in the 
process).  
• Training efforts: The student mainly responsible for modelling had no prior experience with 

SysML or the IFM framework. A considerable amount of time was required to learn and get 
experienced with the SysML vocabulary and formalism before he could get started with 
modelling the various diagrams in SysML. 

• In contrast, the time required to get started with modelling in the IFM framework was 
considerably shorter as no particular formalism had to be learned and as matrices are a well-
known means for representing information allowing modelling to start rather facilely.  

• Modelling efforts: One aspect that continuously required attention while modelling in SysML 
was the implementation and refinement of all formal definitions for the modelled entities, which 
was not the case in the IFM framework. Another difference concerns modelling alternative 
process flows (i.e. the variants mentioned earlier). In SysML, activity or sequence diagrams 
allow modelling alternative process flows, error scenarios, etc. occurring within a use case into 
the same diagram (see Figure 3).  

• In the IFM framework, each set of views is associated to one particular process flow. Therefore, 
each variant in a process flow needs to be modelled in a separate set of views. Although copying 
and adapting already finalised spreadsheets in Excel was quite helpful, modelling efforts were 
still extensive for use cases that included a large amount of alternative processes. 

• Formalism: Creating a formally correct SysML model requires equipping a large amount of 
model elements with appropriate formal types. Finding and creating the correct/suitable types 
took a considerable amount of time and continuous reflection. Particularly the gradual refinement 
and expansion of created diagrams with new entities was found to cause difficulties in this 
respect. 

• Modelling with the IFM framework does not involve such formalism. Thus, no such problems 
were experienced. 

• Adaptability: Adapting the originally proposed views or diagrams, respectively, was experienced 
to be relatively easily possible in both approaches. In SysML this can be quickly performed by 
creating new profiles and stereotypes to adapt and expand diagrams wherever needed.  

• In the IFM framework, whenever needed, contents or forms (e.g. adding new sub-sections in 
rows or columns) of individual views could also be quickly adapted to the needs of a specific 
situation. 

• Model readability: Several SysML diagrams quickly became rather complex and thus difficult 
(and time consuming) to read even for the modellers (i.e. many interconnections, notes, 
alternatives, etc. had to be represented). Further, the distribution of information across multiple 
diagrams (which are not always clearly linked) created problems for any person not initially 
involved in creating the respective diagrams. As can be expected, in these cases, the before-
mentioned efforts for adapting diagrams were also considerably larger for SysML compared to 
the IFM framework. 

• In comparison, a set of views in the IFM framework always refers to one specific use case, thus 
representing all information describing this use case in one spreadsheet. However, maintaining a 
holistic view of the entire system when modelling multiple use cases is hampered because 
information is distributed over different spreadsheets. Also, modelling highly complex use cases 
can result in rather large matrices quickly, which can be difficult to read on a computer screen.  

• Change management: A general problem in modelling complex functionality in different views 
or diagrams, respectively, is ensuring model consistency, i.e. orchestrating any introduced 
adaptations to associated views/diagrams that will also be affected by a particular change. In 
SysML this was found to be more difficult than expected. In some cases, the software tool would 
indeed display warnings if changes in one diagram also affected others, which was very helpful. 
However, in most cases (particularly if actors and their interactions with others were adapted), no 
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such warnings were provided, thus, frequently yielding inconsistencies across diagrams. These 
often went unnoticed until rather late in the modelling process. 
In comparison, within a single set of views (i.e. for one particular use case) in the IFM 
framework, adaptations made to one view could be rather easily orchestrated to all affected 
adjacent views. However, if the changes affected views in other use cases as well, additional 
efforts were required to verify their consistency and implement required adaptations. 
Nevertheless, overall, experienced efforts for implementing adaptations were considerably lower 
in the IFM framework. 

5.3 Discussion  
The insights from the literature review and the application of both approaches provided valuable 
insights. In the following, these are critically evaluated and discussed. 

5.3.1 SysML formalism may both hamper and support the modelling process  
The strong formalism in SysML was a barrier in the beginning and required continuous efforts 
throughout the entire modelling process. The initial learning efforts and required abstraction in SysML 
has already been identified as one of the main barriers for its wide-spread use in interdisciplinary 
design by other researchers (see e.g. Borches and Bonnema 2010). At the same time, the authors of 
this paper found that the formalism provides a certain guidance: the formalism predetermines how the 
different entities should be used, which occasionally was rather helpful in setting up the diagrams. 
The IFM framework provides much more freedom, which was particularly beneficial for setting up 
early models on paper, as these could be quickly adapted and refined. The formalism in SysML 
prevents such quick adaptation. Eventually, both freedom and formalism thus have their benefits and 
shortcomings. Whether this is perceived as one or the other depends on personal preferences of a 
designer and on the context of the project. It may be beneficial to balance properly between formalism 
and flexibility by adapting both approaches adequately.  

5.3.2 Visual and formal linkage of information are beneficial in modelling 
One of the strengths of the IFM framework is the direct visual linkage between matrices, which 
proved particularly beneficial during adaptation of information within and across different views. A 
remaining problem is the linkage of different sets of views for different use cases. This problem is 
avoided to a certain extent in SysML through the use of the meta-model. Although some difficulties 
occurred with this functionality during change management, it is in principle a useful feature. Here, a 
large potential for cross-fertilisation exists. While SysML could certainly benefit from a clearer visual 
connection of information across diagrams, the IFM framework could benefit from (somehow 
formally) linking information across different sets of views. The latter suggests the need to develop an 
adequate software tool to support such a feature.  

5.3.3 Readability of views and diagrams needs improvement 
For large SysML diagrams, it proved difficult to arrange all model elements adequately, especially if 
many connection lines had to be drawn. In this respect, the matrix-based representation in the IFM 
framework was perceived much more convenient during modelling. However, in case many different 
entities are to be represented in the IFM framework, the matrices can become very large, making them 
difficult to read as well. In these cases, also the direct visual linkage between the different matrices 
(one of the main benefits of the IFM framework) is hampered. This suggests that in order to maintain 
readability of the different views, it may be beneficial if specific contents could be flexibly highlighted 
or blanked out in the views, respectively to allow focussing on specific parts only. This, again, 
suggests implementation of the IFM framework into an adequate software tool.  

5.3.4 Representing alternative process flows in the IFM framework needs improvement 
The possibilities to represent alternative process flows and error scenarios in one activity diagram 
proved to be beneficial in SysML. Even though the respective diagrams may subsequently become 
rather complex, these possibilities decrease modelling efforts considerably in comparison to the IFM 
framework. Variant sets of views in the IFM framework to represent all alternative process flows 
sometimes only differed by very few process elements. The result is a large number of sets of views 
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required for comprehensive modelling. This, eventually, increases modelling efforts hampers adapting 
the views quickly if new information is gained.  

5.4 Implications 
The main insights from the presented comparison of the IFM framework and SysML are the 
following: 
• the IFM framework and SysML both should provide more support to ease readability of complex 

views or diagrams, respectively; 
• in SysML, visual linkage of information across diagrams should be enhanced, while the IFM 

framework requires support in linking information across different sets of views; 
• the IFM framework could benefit from adequate conceptual adaption to allow representing 

alternative process flows, error scenarios, etc. for a use case in the same set of views. 
As discussed before, in order to improve the applicability of the IFM framework, the first and second 
issue may be addressed by developing an adequate software support. Development of such a software 
support is part of on-going research. In particular, the issue of how to adequately compromise between 
the formalism that is required in such tools and maintaining flexibility needs to be researched properly. 
The most pressing issue, however, seems to be the insufficient support for modelling alternative 
process flows for use cases. A solution to this issue is presented in the following section.  

6 CONCEPTUAL ADAPTATION OF THE IFM FRAMEWORK 

The idea behind the developed adaptation of the IFM framework was to integrate the possibilities 
offered by activity diagrams in SysML for representing alternative process flows and error scenarios 
into the IFM process flow view. The visual linkage between the represented elements across adjacently 
placed views was to be maintained. Hence, in particular the horizontal spread of process blocks in the 
process flow view was to be maintained in order to keep the direct linkage with use case and actor 
views (see Figure 2). A particular difficulty arose from representing alternative successive state 
changes in time in relation to alternative processes in the state view. The developed concept is 
presented in the following. Only the process flow view and state view required adaptation.  
The process flow view was expanded with common symbols used in a SysML activity diagram (see 
Legend in Figure 5). Also the notation of so-called “guards” from SysML (i.e. textual statements in 
square brackets, representing conditions for a particular path to be taken) is integrated. With the help 
of these elements, alternative processes may easily be modelled next to each other (i.e. still spread 
horizontally), while allowing their clear visual separation using the different “decision nodes”. 
Alternative processes are equipped with the same process number but have different annotations (e.g. 
P4, P4’ and P4’’or P4 and P4*, etc.). Simple termination scenarios (like e.g. “no further command” in 
Figure 5) are modelled as outgoing flows of a decision node and end in a “final node”. 

 
Figure 5. Adapted process flow view containing all alternative process flows for use case 

"manipulating quadrocopter while flying" 

P2: enable GPS 
mode

P3: enable 
height control

P4: activate 
waypoint 

navigation

P4': send 
steering 

command via 
computer

P4'': send  
steering 

command via RC

P5: define 
waypoints

P6: process 
waypoints

P7: change flight 
state  

P1
: d

is
tr

ib
ut

in
g 

en
er

gy

[GPS mode and height 
control already enabled]

[else]

[no further command]

[waypoint navigation]

[else]

[steering via computer] [steering via RC]

Legend:

Initial node

Activity final node

Flow final node

Fork node – multiplies 
input

Join node – joins input to 
one output

Decision node – places 
output depending on guard

Merge node – waits for 
input, then places it onto 
outgoing flow

Indicates transport of flow 
from one place to another 
in diagram, without lines

Indicates that associated 
action triggers further 
actions

10



ICED15  

As can be expected, alternative processes may evoke alternative states (and state changes) in operands 
and/or actors. If such alternative states and sequential changes occur, the respective column in the state 
view is split into different sub-columns. Their representation parallel to the process flow view is 
illustrated in Figure 6 exemplarily focusing on the user. In the given example, the processes P4, P4’ 
and P4’’ (see Figure 5) evoke three alternative sequences of states and their changes. These are 
represented as three alternative sub-columns in the state view. Later in the process flow, the alternative 
paths reunite triggering process P7 (see Figure 5). Therefore, the three corresponding sub-columns (for 
P4, P4’ and P4’’) reunite as well (see Figure 6). The fourth sub-column corresponds to the abort 
scenario after P3 (see Figure 5), which can be similarly modelled using a parallel column (see Figure 
6).  

 
Figure 6. Excerpt of state view indicating state changes corresponding to alternative 

process flows  

The adaptation of the framework was successfully applied while remodelling the quadrocopter and led 
to a considerable reduction of the number of sets of views. The seven different sets of views required 
to represent the use case “manipulating quadrocopter while flying” before were effectively reduced to 
one single set of views. This directly results in a substantial reduction of modelling efforts and of the 
before-mentioned difficulties with linking information across different sets of views; thus, it also 
supports building a holistic view of a system’s functionality. 

7 CONCLUSION 

The central aim of the presented research has been the comparison of the IFM framework with SysML 
in order to derive possibilities for cross-fertilisation and improvement of the IFM framework. Based 
on both the literature review as well as the obtained insights from modelling the functionality of a 
quadrocopter, it was derived that both SysML and the IFM framework have their specific advantages 
and disadvantages. The main differences seem to originate from the strong formalism used in SysML, 
in contrast to the emphasis on flexibility in the IFM framework. Three main potentials for improving 
the IFM framework were derived. While two of them are currently being addressed in the 
development of an adequate software tool implementing the framework, the third, i.e. the issue of 
representing alternative process flows, required conceptual adaptation. The adaptation of the 
framework proposed in this paper (i.e. the described expansion of the process flow view and the state 
view) solves the identified shortcoming. It was successfully applied for modelling the example of the 
quadrocopter. With the proposed concept it was possible to model alternative states provoked by the 
execution of alternative processes, even for very complex process flows. The possibility to do so, in 
this particular example, resulted in a considerable reduction of the required modelling efforts. It is 
expected to provide designers with similar benefit in modelling other multi-technology systems. This 
will be tested in future research. Such research will involve applying the adapted IFM framework for 
modelling different kinds of complex technical systems in engineering practice to evaluate and 
improve its applicability further. 
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