
ICED15

UTILIZING FAILURE INFORMATION FOR MISSION
ANALYSIS FOR COMPLEX SYSTEMS
DeStefano, Charlie; Jensen, David
University of Arkansas-Fayetteville, United States of America

Abstract
This paper presents a new failure analysis method, Failure Identification for Mission Analysis
(FIMA), which performs an overall and mission-specific failure analysis for complex systems. The
FIMA method identifies all possible functions of a complex system and then analyzes how various
failures may have differing effects on these functions. Then, the FIMA method uniquely uses this
information to analyze specific mission plans, which are made up of individual mission tasks that a
system must complete. The FIMA method uses multiple unique metrics to determine the effects of a
given failure scenario on a potential mission plan and then uses other unique metrics to assess and
optimize a new mission plan based on the system's remaining tasks and functionality. This method
aims to utilize failure information to enhance the adaptability of complex systems in order to reduce
the effects of failures and extend lifespans.

Keywords: Failure Analysis, Mission Analysis, Design theory

Contact:
Charlie DeStefano
University of Arkansas-Fayetteville
Mechanical Engineering
United States of America
cdestefa@uark.edu

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED15
27-30 JULY 2015, POLITECNICO DI MILANO, ITALY

Please cite this paper as:
 Surnames, Initials: Title of paper. In: Proceedings of the 20th International Conference on Engineering Design

(ICED15), Vol. nn: Title of Volume, Milan, Italy, 27.-30.07.2015

1

ICED15

1 INTRODUCTION

Technological advancements have allowed for the creation of many complex systems capable of
performing a variety of tasks a variety of different ways, simplifying processes and helping automate
many industries. Unfortunately, along with the benefits of being able to produce complex behaviors,
complex systems also produce complex failures, which can cause great difficulty for failure analysis
due to the fact that the different functions of a complex system may all experience significantly
different effects from the same failure. Thus, the various use-cases of a complex system must be taken
into account in order to provide accurate failure information. Unfortunately, the inclusion of these
possible complex use-cases is where current methods fall short. Most current failure analysis
methods, many of which are discussed in the following section, typically only identify potential
component failures and how they might affect component and system-level behaviors, in a general
sense. These methods do not consider a failure’s effect on specific missions, however. A mission is
defined here as the system’s high-level use-case objective; for example, an airplane getting from point
A to point B would be its mission. Mission tasks, on the other hand, are the discrete actions that must
be done to complete a mission; for example, taking off, cruising a particular route, and landing would
be three abstract mission tasks for an airplane. Not taking into account such mission details greatly
limits current analysis methods because during one mission task a failure may cause drastic changes to
the system’s performance, while during another, that same failure might not be noticed at all. Thus,
the system’s expected use after a failure occurs must be considered in order to accurately identify the
effects and severity of the failure, and therefore, this paper presents a new method to do just that: the
Failure Identification for Mission Analysis (FIMA) method.
Along with identifying which functions or mission tasks are still achievable after a failure occurs, it is
also important to know if there are any functional or control redundancies that could help restore any
lost functionalities; a functional redundancy is the utilization of healthy components in a new fashion
in order to compensate for reduced or lost functionalities of unhealthy components, and a control
redundancy is a parameter change to maintain nominal performance (Umeda et al., 1995).
Understanding a system’s functional and control redundancies is the first step towards improving a
system’s robustness. Robustness is a system’s ability to adapt to failures and extend its own lifespan
in order to get the most use before any external involvement is required, such as the repair or
replacement of faulty components. The human body is an excellent example of a robust complex
system as it is constantly adapting to failures through the use of redundancies. For example, if you
sprain your ankle, the body’s pain sensors will feel the failure and adjust its functionality by walking
slower and with a limp; putting more weight on the healthy leg is a functional redundancy and walking
slower is a control redundancy. If these adjustments were not made and a normal walking style at a
normal pace was continued then the injured ankle would be more susceptible to further injury and
eventually total failure. Unfortunately, non-living complex systems cannot feel pain and thus will
attempt to continue operating at full capacity on unhealthy components, increasing the likelihood and
rate of further degradation until a total failure occurs. Therefore, the FIMA method presented in this
paper has been designed to identify when, where, and which redundancies are needed based on current
mission plans.
The FIMA method described in this paper focuses on a quasi-quantitative analysis approach using
performance state-machines. This method is a continuation of research done by the authors on using
performance state-machines for failure analysis (DeStefano, 2014 & DeStefano and Jensen, 2014).
The quasi-quantitative approach in this paper focuses on abstract failure modes, such as ‘Nominal,’
‘Degraded,’ and ‘Defective,’ but allows for different degrees and types of degradation by
incorporating physics-based equations to more accurately define a system’s behavior during nominal
and faulty conditions, such as a channel being ‘10% too big/small’. These new behaviors are then
used to assess and optimize the system’s performance for specific mission plans. This paper will first
explain the theory and methodology for the FIMA method and then apply it to an example case study.

2

ICED15

2 BACKGROUND

Two of the main failure analysis methods currently used in industry are Failure Modes and Effects
Analysis (FMEA) (Nannikar et al., 2012 & Tague, 2004) and Failure Modes, Effects and Criticality
Analysis (FMECA) (Reliability Analysis Center, 1993). However, these methods do not use function-
based modeling. These methods use only static failure definitions to identify the causes, effects,
probabilities, and criticality of known failures that a system may experience. However, the analysis is
explicitly on how a component’s failure will affect that single component’s performance, while the
propagating effects on the other components’ and the overall system’s functions are not explored.
Moreover, different use-cases, or missions, are not explored. Other existing methods that do explore
model-based failure analysis include the Function-Failure Design Method (FFDM) (Stone et al., 2005
& Stone et al., 2006), Function-Failure Identification and Propagation (FFIP) (Kurtoglu and Tumer,
2008 & Jensen et al., 2012), and Risk in Early Design (RED) (Grantham-Lough et al., 2008 &
Grantham-Lough et al., 2009). These methods focus on function-based modeling to identify the
behavioral effects of a system’s possible failure modes, as well as how failures might propagate
through the system. Some methods, such as FFIP, also provide a more expansive analysis by including
physics-based behavioral equations in order to more accurately define failure effects on system
performance. Unfortunately, these methods, similar to FMEA and FMECA, do not consider the
various potential missions that a system may be asked to perform, and therefore, they provide only a
limited understanding when it comes to complex systems and their complex failures.

3 THEORY & METHODOLOGY

The first step of the FIMA method is to create an abstract model of functional relationships and
dependencies between the system’s components. These functional relationships are not based on
internal system structure, but rather only on functionality, as well as any other factors that may affect a
system’s performance, such as a component’s manufacturing process or environmental influences.
Structure is not valued here because in complex systems where components can transfer electrical,
material, or signal information, just because two components may be next to each other structurally,
they do not necessarily have any interaction with one another. Therefore, only a component’s
functionality is assessed.
The FIMA method uses Simulink state-flow models to identify the functional relationships and the
different potential failure modes, and uses MATLAB coding to initiate failure scenario simulations.
MATLAB and Simulink were used as the modeling software for this research, however the FIMA
method should also be able to be applied using any other state-based, signal processing software. Each
component’s state-machine allows for that component to switch between any of its potential
performance states, such as “Nominal Performance” or “Degraded Performance,” and then provide a
unique output value based on which state the component is currently located. Within each potential
performance state, governing equations are used to describe how the different states, or types of
failures, will influence the system’s behavior. For example a “Degraded” failure’s severity can be
simulated anywhere on a scale of 0-100% degraded for the component’s functionality, as well as its
speed if applicable. Also, if a “Defective” failure occurs, a failed position can be identified, such as an
airplane’s landing gear failing open or closed. This ability to identify different severity and types of
failures is very important in being able to understand how various mission tasks will be affected. For
example, if an airplane’s landing gear becomes “Defective” and fails in the open position after takeoff,
the failure would still be manageable as the cruising performance would only be degraded, however, if
the landing gear fails in the closed position, this would result in a critical failure as now the landing
task would not be achievable without crashing.
Once all system components have been created and defined within the Simulink model, the user can
begin simulating specific failure combinations for general system analysis, as well as specific mission
analysis using a customized MATLAB code. First, the user will be prompted by MATLAB to input
the health state of each component; the health state includes whether a failure has occurred and, if so,
what type of failure it is, and lastly, how severe it is. With this information, the behavioral models
will be able to calculate the remaining functionalities of the overall system. Next, the user can input
specific mission tasks, such as move from point A to point B to point C. Then, the program identifies
the remaining functions that are capable of completing each individual task based on the system’s
current health. If the remaining functions are not capable of completing the mission tasks, then the

3

ICED15

program will indicate that the mission is not possible and will specify which parts are responsible for
losing that specific capability. If the mission is possible, the program will indicate this along with
what, if any, redundancies were needed. Redundancies are based on the optimization portion of the
program.
The FIMA method’s optimization technique is based on trying to balance the failures throughout the
system by looking at each component’s health and all possible remaining solutions to the individual
mission tasks, and then ranking the faulty components from most degraded to least degraded. Then, if
a system has three parts for example, the program looks at the top 20 solutions that limit the necessary
functionality for the most degraded component, from which the top 10 solutions are then chosen for
the second most degraded component, from which the top solution for the least degraded component is
finally chosen as the “best” solution. By performing this type of optimization, the goal is to create a
balanced rate of degradation by forcing the least degraded components to compensate for the most
degraded, but still limiting these compensations as much as possible. This is done to extend a
system’s lifespan by keeping it from suffering a critical failure in one part, while all other parts are
still healthy. For example, a system would be able to get much more use if all parts were 90%
degraded before one of them finally failed, as opposed to one part failing when all the other parts are
only 20% degraded. This optimization is used to create the “best” course of action to complete
specific mission tasks, but the “best” course of action is defined within the MATLAB code based on
the necessary importance of certain aspects of the mission. For example, a system could be optimized
to complete a mission in the shortest amount of time, or it could be optimized to repeat a mission the
most possible times before a critical failure occurs; for the case study described in the following
section, the system was optimized for the latter. Lastly, the optimization procedure will not only help
balance failure degradation among components but will also help make all mission plans more robust.
Lastly, metrics within the MATLAB code are created to provide a system’s Overall Coverage Rating
(OCR), Mission Time, and Mission Robustness Ratings (MRR). Overall Coverage Rating is the ratio
of a faulty system’s remaining possible functionalities versus a nominal system’s possible
functionalities. This OCR value will identify how much of a system’s functionality was eliminated by
the system’s current failure scenario. The Mission Time value will be the time it takes to complete all
of the mission’s tasks based on the optimized solutions. Lastly, the Mission Robustness Ratings are
essentially the same as the OCR, however, there is an MRR for each individual mission task in order
to identify which tasks are most affected by the current failure scenario. The OCR and MRR values
are then used to compare and improve mission plans for specific failure scenarios, based on which
missions are more robust and therefore, which will be better able to handle further system
degradations. In the following sections, this method will be applied to an adaptable robot arm system.

4 CASE STUDY: 3-LINKAGE ROBOTIC ARM

4.1. Case Study: Overview
A 3-linkage robotic arm system, with a Base Joint that rotates on the X-Y axis, and three Arm Joints
that rotate on the r-Z axis, as seen in Figure 4.1, will be the focus of this case study. This robotic arm
system was chosen because it has a well understood behavior with known governing equations, as well
as the fact that it is an adaptable complex system with multiple functional redundancies and mission
possibilities, which will serve as an excellent example for the FIMA method’s mission analysis
capabilities. The robotic arm system described here is meant to represent a potential manufacturing
robot that might be found on a factory floor assembly line that would have missions of moving objects
between different positions in the [X,Y,Z] coordinate plane.

Figure 4.1 – 3-Linkage Robotic Arm Assembly

4

ICED15

Unfortunately, when everything is working nominally there is no simple way of determining how
robust a mission plan truly is, and it is only when specific failures begin to appear that any accurate
mission analysis can really take place. For example, one mission plan might only require moving an
object a short distance, but one of the locations is at the robot’s maximum reach, while another
mission plan has the robot moving an object much further distances, but the locations are closer to the
base. While the first mission plan may be quicker and require fewer movements, thus, making it seem
like the better mission, a small degradation is all that would be necessary to make the maximum reach
unachievable, making the first mission plan impossible, while the second mission plan would go
virtually unaffected. This shows how the differentiation between how various missions will react to a
given failure scenario is of the utmost importance because depending on the type of failures that occur,
a system may need to re-optimize or possibly even completely change a mission plan. This analysis
problem is why the ability to identify the “best” mission based on the Mission Robustness Ratings for
each mission task is one of the major unique contributions of the FIMA method. Therefore, this
robustness analysis will be addressed in much greater detail in this case study.

4.2 Case Study: Methodology
The first step was to create the Simulink state-machines for each component: the Base Joint, Joint1,
Joint2, and Joint3. Because all of the components are the same type of mechanism, i.e. joints, the
state-machines were all able to be nearly identical, differing only in their governing equations’
nominal values; the Base is defined as having a nominal movement range of 0 to 180 degrees, Joint1
can range from 0 to 90 degrees, and Joint2 and Joint3 can each range from -180 to 180 degrees. Each
joint was sampled every 1 degree. Sensitivity analysis was done by altering the sampling size to every
3 degrees, as well as every 6 degrees, for each of the use-cases in section 4.3. For the 3-degree
sampling size the differences in the resulting OCR, MRR, and Mission Time values were minor
(average differences of less than 1% for the OCR values, roughly 2% for the MRR values, and roughly
1 minute for the Mission Times), however, for the 6-degree sampling size the difference in results
were quite significant and unpredictable. Each linkage was then given a length of 3 feet and the
nominal rotational speed of each was defined as 30 degrees per second. Next, for simplicity sake,
during this case study it was assumed that there were no obstacles within the arm’s movement range.
Also, the linkages were identified as connecting off-axis in order to allow the arm to rotate in on itself.
These criteria were all chosen arbitrarily for this example and would likely differ depending on the
type of arm assembly and quality of components. Also, these criteria could be changed to include
obstacles or exclude certain types of arm movements by adding limitations within the MATLAB code.
Lastly, all arm coordinates were calculated using the following forward kinematic equations within the
MATLAB code:

r = L1*cos(Theta1)+L2*cos(Theta1+Theta2)+L3*cos(Theta1+Theta2+Theta3) (1)

Z = L1*sin(Theta1)+L2*sin(Theta1+Theta2)+L3*sin(Theta1+Theta2+Theta3) (2)

X = LR*sin(Theta0) (3)

Y = LR*cos(Theta0) (4)

where, L1, L2, and L3 are the lengths of the three arm linkages, LR is the total length of the arm in the
r-direction, and Theta0, Theta1, Theta2, and Theta3 are the joint angles for the Base, Joint1, Joint2,
and Joint3, respectively.
Next, the MATLAB user is prompted to input the health of each component, as well as the degree of
failure and type of failure that they wish to have simulated; the types of failure for this system are
movement and speed-based. A joint’s movement range can be “Defective,” resulting in the joint being
stuck at a user-specified angle, or it can be “Degraded,” anywhere from 0-100% that can then be
applied to either a Lower, Middle, or Upper limitation. For example, a 10% Lower limitation for a
range of 0-180 degrees would result in a new range of 18-180 degrees, a 10% Middle limitation would
result in a new range of 9-171 degrees, and a 10% Upper limitation would result in a new range of 0-
162 degrees. Likewise, a joint’s speed can also be “Degraded” anywhere from 0-100%. Also, along
with the user-inputted failure-based speed degradation, a joint’s speed is also programmed to decrease

5

ICED15

linearly over time depending on the component’s lifespan rating, i.e. if a joint has a lifespan of 10,000
180 degree movements with a speed of 30 degrees per second, then if that joint moves 180 degrees
5,000 times it will now only be capable of moving at 15 degrees per second.
The Simulink model first processes the current state of each component based on the user’s inputs and
then provides output data, such as new minimum and maximum achievable angles and speeds, that
will then be processed by the MATLAB code to determine the Overall Coverage Rating, as well as the
graphical representation of all functionalities for the overall system, which can be seen in Fig. 4.2; the
top two plots represent the overall coverage of the arm for a nominal system on the X-Y and r-Z axes,
respectively, and the bottom two plots represent the remaining coverage for a random faulty system.
The example faults present in the bottom plots were: a 20% Middle limitation for the Base, a 25%
Middle limitation for Joint1, a 40% Upper limitation for Joint2, and a 35% Lower limitation for
Joint3.

Figure 4.2 – Possible Movement Coverage for 3-Linkage Robot Arm

(Top: Nominal, Bottom: Degraded)

(Left: X-Y axis, Right: r-Z axis)

Next, the user will input the various mission tasks, i.e. moving an object from point A to point B in the
[X,Y,Z] coordinate plane, as well as how many cycles of these tasks need to be completed. Each
[X,Y,Z] location was given a margin of error of 0.2 feet based on the assumption that the arm’s claw
would be at least slightly bigger than the object it is picking up. These user inputs will then result in
mission-specific output data that will be compared with the overall system output data to determine
mission feasibility, to optimize the mission plan, and to identify any redundancies or repairs that may
be needed. An example of the plot generated comparing the original, nominal arm angles to the
degraded but optimized arm angles for a given mission can be seen in Fig. 4.3; the mission tasks were
to move between two arbitrarily chosen points, [3,4,4] to [2,2,5], and the degraded plot was for the
same example failure scenario as seen in Fig. 4.2, where Joint2 is the most degraded component and
therefore, the movements were optimized for Joint2.

6

ICED15

Figure 4.3 – Nominal (Left) vs. Optimized for Degradation (Right) arm positions on the r-Z

axis

For this system, two use-cases were explored in the following section. The first is using the FIMA
method for comparing two different missions during the same failure scenarios, and the second is
utilizing the failure data to optimize a set mission plan to handle further failures by altering the
position of the entire robot.

4.3 Case Study: Results and Discussion

4.3.1 Use-Case 1: Mission Comparisons
The first use-case was to evaluate different mission plans, i.e. different sets of tasks, or initial and final
positions, for different failure scenarios in order to show that by using the Overall Coverage Rating
(OCR) and the Mission Robustness Ratings (MRR) the FIMA method can accurately identify which
mission plan is best. The mission data for this use-case can be seen in Table 4.1. This mission data
includes three different failure scenarios, where three failure factors for each component are identified:
Percent Degraded-Range, Limitation Type, and Percent Degraded-Speed, respectively. Each scenario
is then evaluated for two different mission plans: A and B. Each mission plan is responsible for two
tasks: moving the robotic arm from an Initial position to a Final position, and these missions are to be
repeated 250 times. The outputs for each mission are the Mission Feasibility (including which
component the mission’s optimization was based), the total Mission Time, and the Mission
Robustness Ratings for both mission tasks, i.e. the initial and final points.

7

ICED15

Table 4.1 – Mission Data for Use-Case 1

 Failure Scenario #1 Failure Scenario #2 Failure Scenario #3
Base 0%, None, 0% 0%, None, 0% 0%, None, 0%

Joint1 5%, Upper, 1% 10%, Upper, 1% 45%, Upper, 1%
Joint2 12%, Middle, 1% 24%, Middle, 1% 48%, Middle, 1%
Joint3 9%, Lower, 1% 18%, Lower, 1% 47%, Lower, 1%
OCR 75.4% 56.1% 15.1%

 A B A B A B
Initial [3,4,5] [2,3,4] [3,4,5] [2,3,4] [3,4,5] [2,3,4]
Final [-2,3,6] [-3,4,6] [-2,3,6] [-3,4,6] [-2,3,6] [-3,4,6]

Cycles 250 250 250 250 250 250
Feasibility Y, FO-J2 Y, FO-J2 Y, FO-J2 Y, FO-J2 Y, FO-J2 Y, FO-J2

Time 24.01 min 46.68 min 23.73 min 50.63 min 24.57 min 37.86 min
MRRi 94.3% 95.2% 89.1% 55.8% 27.6% 27.3%
MRRf 95.2% 91.4% 90.1% 86.0% 32.0% 30.4%

For Failure Scenario #1, the Overall Coverage Rating for the arm is 75.4%, which indicates that
roughly a quarter of the system’s total functionality has been lost. Next, looking at the two mission
plans, both are feasible and both were functionally optimized for Joint 2, which is what was expected
due to the fact that Joint 2 was the most degraded component. Finally, the mission time, MRRi, and
MRRf values are evaluated, where MRRi and MRRf are the Mission Robustness Ratings for each of
the mission tasks, i.e. the initial and final positions. For the time comparison, the shorter the Mission
Time the better. However, the shortest mission is not always the most robust and this is where the
Mission Robustness Ratings’ importance is seen. As mentioned earlier, the individual Mission
Robustness Ratings are indicators of how the system handles specific failure scenarios for its various
mission tasks, and it is desired that both MRRi and MRRf values are larger than the OCR due to the
fact that the OCR indicates the overall, average robustness. Therefore, larger MRR values would
signify that the mission plans have above average robustness. As seen in Table 4.1 both missions have
relatively high MRRi and MRRf values, implying that neither mission was very affected by Failure
Scenario #1, and they are also above the OCR value, which as previously mentioned, is desired.
However, when directly comparing mission A to mission B, mission A is better all-around, as it not
only can complete the necessary 250 cycles faster, but the mission tasks are more robust on average
than those for mission B. Even after only the first failure scenario, mission A can be identified as the
preferred mission plan, however to show that this assumption holds true for further degradations,
Failure Scenario #2 and #3 were simulated. As expected, mission A remains faster and more robust
than mission B for all scenarios. In Failure Scenario #2, mission A becomes significantly better in all
categories than mission B. However, in Failure Scenario #3, while mission A is still better, the
different components’ degradations are becoming balanced through optimization, and, as expected, the
optimization has also begun to balance each mission’s robustness ratings, as well as helping to
decrease each of their mission times.

4.3.2 Use-Case 2: Mission Adjustments
The second use-case was to demonstrate that by using the OCR and MRR values for a specific failure
scenario, a mission plan could be greatly improved; both the failure scenario and mission plan were
arbitrarily chosen for this study. Unfortunately, because certain mission plans might not be able to be
altered, such as a robot picking up a bolt and then placing it on a specific area of a vehicle coming
down the assembly line, the position of the entire robot itself might need to be altered in order to
increase the system’s robustness. Therefore, it is assumed that the arm assembly is capable of being
moved on the X-Y plane, such as by being placed on wheels, in order to optimize its position relative
to the initial and final positions it must reach. As seen in Table 4.2, the original mission plan is again
responsible for two tasks of moving the robotic arm from the initial position to the final position, 250
times, and the output variables for each mission are the same as for use-case 1: Mission Feasibility
(including which component the mission’s optimization was based), total Mission Time, and Mission
Robustness Ratings for both mission tasks.

8

ICED15

Table 4.2 – Mission Data for Use-Case 2

Base 0%
Joint1 15%, Lower, 1%
Joint2 15%, Lower, 1%
Joint3 20%, Middle, 1%
OCR 57.6%

 Original (Shift: -2Y) (Shift: +3X) (Shift: -1Y)
Initial [-1,1,1] [-1,3,1] [-4,3,1] [-4,4,1]
Final [4,3,-1] [4,5,-1] [1,5,-1] [1,6,-1]

Cycles 250 250 250 250
Feasibility Y, FO-J3 Y, FO-J3 Y, FO-J3 Y, FO-J3

Time 71.57 min 44.46 min 34.99 min 31.03 min
MRRi 17.9% 8.3% 60.5% 80.8%
MRRf 50.3% 81.8% 53.1% 82.7%

As seen in Table 4.2, when the failure scenario occurs, the original mission plan is identified as
incredibly poor. It is still feasible, however, both MRR values are well below the OCR, indicating that
there are far better mission plans available, and this is where the designer would ideally be able to
tweak the position of the robot in order to find a more robust mission plan. First, a shift in the
negative Y direction was applied, i.e. backing the robot away from the assembly line, and while this
adjustment improved the mission time and the MRR of the final position, it reduced the MRR of the
initial position. Next, a shift in the positive X direction was applied, and this effectively improved the
mission time and both MRR values, however, the MRR value of the final position is still below the
OCR, so further improvements can still be made. Finally, another shift in the negative Y direction was
made and this resulted in vast improvements to both MRR values and the overall mission time. While
further improvements may have been possible through further adjustments, for the purposes of this
study, these improvements were sufficient. Ultimately, this study showed that by following the FIMA
method, using the OCR and MRR values, a designer could effectively reduce the original mission time
by more than half, while also vastly improving the system’s mission robustness.

5 CONCLUSIONS

With the constant advancement of technology and the ever-growing capabilities of complex systems, it
is absolutely vital to know what the system is being used for in order to accurately understand the
effects of failures on the overall system performance, and the lack of this mission analysis is where
current methods fall short. By using the Failure Identification for Mission Analysis (FIMA) method,
on the other hand, mission assessments and optimizations can be performed in order to balance failure
degradations and increase mission robustness for any number of mission plans in an effort to
maximize a system’s use in between repairs. This unique ability could be especially beneficial for
complex systems that are incapable of receiving repairs, such as the NASA rovers exploring Mars,
because even if certain functions are lost due to failures, it is vital to know which functions and
mission tasks are still feasible in order to maximize the amount of use the existing rovers can perform
before new ones need to be sent.
By utilizing failure information for mission analysis, the FIMA method can provide more
comprehensive and useful information than other current failure analysis methods. With next-
generation technologies becoming increasingly more complex, it is not enough anymore simply to
know how a system will fail. What the system will be doing, what environment it will be doing it in,
and what functional adjustments are available must all be accurately identified in order to effectively
analyze the effects of complex failures in a complex system, and the FIMA method has been designed
to do just that. First, the FIMA method identifies and assesses the potential functions and mission
tasks that a complex system may be asked to perform, and then based on various potential failure
scenarios, the functions and tasks that are the most and least robust can be identified. Then, by using
this information, the FIMA method is able to optimize the system’s performance in order to more
effectively achieve specific mission plans for any given failure scenario.

9

ICED15

6 FUTURE RECOMMENDATIONS

While, currently, the health state of each component and the specific degree of failure must be inputted
by the user, in the future, with the addition of actual sensor data, the MATLAB code could be used for
real-time optimization of a real-world physical system. In this capacity, the code would again not care
about the causes of failure, but instead only about the system’s functional capabilities that remain. For
example, for the manufacturing robot in the case study, instead of the user inputting a “Percent
Degraded” value prior to a mission, an actual robot would run a quick diagnostics check by rotating
each individual joint to their minimum and maximum angles at peak speed. Then, instead of the state-
machines having to calculate the individual minimum and maximum values and speeds, the sensors
would send their data directly back to the code that would then proceed as before to optimize the arm
angles based on the different minimums and maximums.
Future work will also include path-planning optimization. For this paper’s case study, it was assumed
that there were no external obstacles and therefore, the arm was able to move between points in a
straight line. However, in more complex cases, it will be necessary not only to know how a failure
affects the arm’s joint angle combinations at various mission points, but also how a failure affects the
arm’s ability to avoid obstacles as it moves from one point to the other. For example, some internal
failures or external obstacles may affect the arm’s ability to move left and right, while others may
affect the ability to extend in and out, and so depending on the required mission plan, the arm’s path
between points will need to be optimized along with the joint angles.
Lastly, future work will include validation of the models through experimentation on a physical
testbed. For the case study examined in this paper, this validation could be done a number of ways.
Mission abilities and times could be tested and compared with the failure scenarios and mission plans
simulated through control input constraints for each joint’s speed and minimum and maximum angles,
or by physically replacing the testbed’s healthy joints with different types of degraded joints.
Degraded joints could be manufactured to have various degrees of wear, jams, or breaks and then
based on each of these effects on rotational speeds and minimum and maximum angles, mission plans,
arm positions and paths, and the effects of further degradation on the overall system performance
could be tested.

REFERENCES
DeStefano, C. (2014). Utilizing Failure Information for Mission Assessment and Optimization for Complex

Systems. MSc Thesis. University of Arkansas-Fayetteville.
DeStefano, C. and Jensen, D. (2014). A Qualitative Failure Analysis using Function-based Performance State-

Machines for Fault Identification and Propagation during Early Design Phases. In Proceedings of the
ASME Design Engineering Technical Conferences; International Computers & Information in Engineering
Conference,

Grantham-Lough, K., Stone, R. and Tumer, I. (2008). Implementation Procedures for the Risk in Early Design
(RED) Method. Journal of Industrial and Systems Engineering, Vol. 2(2) Pg 126-143.

Grantham-Lough, K., Stone, R. and Tumer, I. (2009). The risk in early design method. Journal of Engineering
Design, Vol. 20(2) Pg 144-173,

Jensen, D., Tumer, I., Kurtoglu, T. and Hoyle, C. (2012). Application and Analysis of Complex Systems Using
the Function Failure Identification and Propagation Framework.

Kurtoglu, T. and Tumer, I. (2008). A graph-based fault identification and propagation framework for functional
design of complex systems. Journal of Mechanical Design, Vol. 130(5).

Nannikar, A., Raut, D., Chanmanwar, R., Kamble, S. and Patil, D. (2012). FMEA for Manufacturing and
Assembly Process. In International Conference on Technology and Business Management.

Reliability Analysis Center. (1993). Failure Mode, Effects and Criticality Analysis (FMECA).
Stone, R., Tumer, I., and Van Wie, M. (2005). The Function-Failure Design Method. In ASME Journal of

Mechanical Design. Vol. 127. Pg. 397-407.
Stone, R., Tumer, I. and Stock, M. (2006). Linking product functionality to historical failures to improve failure

analysis in design. Research in Engineering Design, Vol. 16(2) Pg. 96-108.
Tague, N. (2004). Failure Mode Effects Analysis (FMEA). Excerpted from The Quality Toolbox. Second

Edition, ASQ Quality Press. Pgs. 236–240. http://asq.org/learn-about-quality/process-
analysistools/overview/fmea.html

Umeda, Y., Tomiyama, T., and Yoshikawa, H. (1995). A Design Methodology for a Self-Maintenance Machine.
University of Tokyo, Japan.

10

	Utilizing Failure Information for Mission Analysis for Complex Systems
	Abstract

	1 INTRODUCTION
	2 BACKGROUND
	3 THEORY & METHODOLOGY
	4 CASE STUDY: 3-LINKAGE ROBOTIC ARM
	4.1. Case Study: Overview
	4.2 Case Study: Methodology
	4.3 Case Study: Results and Discussion
	4.3.1 Use-Case 1: Mission Comparisons
	4.3.2 Use-Case 2: Mission Adjustments

	5 CONCLUSIONS
	6 FUTURE RECOMMENDATIONS
	REFERENCES

