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Abstract 

Firms usually design their product lines with products phased in and phased out in response to market 
or technology changes. This adaption of a product line has complicated implications on market 
demand and fracturing cost due to the coexistence of both competitive and complimentary relationship 
among different product models. This paper proposes a computational model to facilitate decision 
making regarding attribute determination, product line evolution and pricing. A logit discrete choice 
model is developed to estimate the purchase probability of a product model via the preferences on 
consumer attributes. An activity-based costing model is developed to estimate the manufacturing costs 
of a product line by aggregating the volume of components using bill of materials, and considering 
volume discounts and common overhead activities. Product line design is then formulated as a mixed 
integer non-linear programming problem with the objective to maximize expected profit by 
determining new products’ attributes, the existence of old products and the price for each product 
model. The proposed model is illustrated with an example of a mobile phone product line adaptation. 
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1  INTRODUCTION 

Optimal product line design is one of the crucial decisions for successful operations of many 
businesses. When determining a product line, some existing product models are eliminated, some are 
retained, and some new product models are introduced to. In most researches on product line design, 
the new product models are assumed to be in the pipeline and the decision maker selects a subset from 
the pool (Green and Krieger, 1985, Nair et al., 1995, Alexouda and Paparrizos, 2001, Li and Azarm, 
2002, Kraus and Yano, 2003, Fruchter et al., 2006, Chen et al., 2009, Luo, 2011, Chen et al., 2014).  
The exclusion of old product models in the candidate pool would lead to the heavy cannibalization 
among new and old product models due to their functional commonality, which hurts the overall 
profitability (Mason and Milne, 1994, Kim and Chhajed, 2000, Desai, 2001). Furthermore, the 
selection decision on predetermined product models also misses the optimal product attribute spaces at 
the system level. Product line design decisions that factor in attributes of new product models and 
selection of old product models can be made more comprehensively.   
Another limitation of current research on product line design is regarding pricing. Prices directly affect 
consumers’ purchasing decisions and can be used to control cannibalization (Meredith and Maki, 
2001). Therefore, pricing is included in most of profit-maximization based product line design models 
(Dobson and Kalish, 1993, Day and Venkataramanan, 2006).  However, most research treats price in 
the same way as other engineering attributes (Dobson and Kalish, 1988). This research aims to 
develop a computational model to assist product line design that includes attribute determination, 
product line evolution, and pricing. As illustrated in Figure 1, the decisions to make simultaneously 
include: (1) what and how many models from the old product line are to be retained in the new 
product line?; (2) what are the product attribute levels?; (3) what are the prices of each product model? 

 

Figure 1. Hierarchical structure of product line, product and attribute 

2  LITERATURE REVIEW 

There are two streams of research related to this study. The first stream views product line design as a 
selection of product portfolios from a candidate product models group. The major research objective is 
maximizing the seller’s profit (Green and Krieger, 1985, Alexouda and Paparrizos, 2001, Morgan et 
al., 2001, Chen et al., 2009, Chen et al., 2014).  Besides, Balakrishnan and Jacob (1996) employed 
genetic algorithm for an optimal product line based on best buyers’ welfare. Green and Krieger (1987) 
and Kohli and Krishnamurti (1987, 1989) developed models and algorithms aiming at the best seller’s 
share-of choice. In this stream of research, each product is represented by a bundle of attributes which, 
except for price, are predetermined and kept constant in the product line design process. Hence, it is 
not possible to adjust product attribute levels to align them with the firm-level objective of product 
line design. Selection of predetermined products may lead to less than optimal product line.  
The second stream of research is concentrated on single product or product line attribute design and 
utilized models to predict the effects of product attributes on the firm-level objectives (Jiao and Zhang, 
2005, Michalek et al., 2005, Kumar et al., 2006, Michalek et al., 2006, Albritton and McMullen, 2007, 
Schön, 2010, Luo, 2011, Tsafarakis et al., 2013). Michalek et al. (2005), Kumar et al. (2006) and 
Michalek et al. (2011) employed a decomposition approach facilitated by the analytical target 
cascading in which product planning and design problem are decomposed into a hierarchy of 
subproblems. Coordinating the solving of the subproblems iteratively leads to the converging of the 
solution of the joint problem. Some other research solved the problem by relying on the simplification 
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of the problem. For example, Schön (2010) assumed fixed costs at the product or product attribute 
levels and fixed costs for selling a unit of a product, and developed an exact approach for the product 
line design by transforming the initial intuitive mixed integer nonlinear programming (MINLP) 
formulation of the problem to an analytically more convenient mixed integer programming (MIP) 
problem with concave objective function and linear constraints.  Jiao and Zhang (2005) addressed the 
product portfolio planning as a maximizing shared-surplus problem, with price treated as one of the 
attributes to be decided by a decision maker. Albritton and McMullen (2007) and Tsafarakis et al. 
(2013) employed a colony of virtual ants and hybrid particle swarm optimization with mutation for 
optimizing product lines at product attribute level. All those aforementioned researches exclude the 
impact of new product models on the existing product models.  

3  PROPOSED MODEL 

In the proposed method, the starting point of product line design is the consumer attribute vector 

denoted as njx . Consumer attributes (such as size, color, weight) collectively determine consumers’ 

preferences on products and therefore impact the market demand. Old products have fixed consumer 
attributes, except price. The decision to make on the old products is whether to retain them or to 
eliminate them in the new product line. Consumer attributes of new product models are designed as 
variables in this proposed methodology. A logit discrete choice model is employed to predict 
products’ market behavior based on their attributes (including price). These consumer attributes can 
also be linked to production activities and determine manufacturing costs. Activity-based costing is 
utilized to estimate the total cost of product line fulfillment. Finally, as shown in Figure 2, profit is 
estimated with known demand, price, revenue and cost information. The focal problem of product line 
optimization is to determine the consumer attribute configuration of the new product, the existence of 
old product models, and the sale price of each product in the new product line under a set of marketing 
and manufacturing criteria. The following section describes how these variables are merged into a 
product line profit optimization procedure. 

 

Figure 2. A decision framework for product line design and pricing 

3.1 Consumer behavior model 

A choice-based logit model is used to elicit consumers’ preferences for different levels of consumer 
attributes and predict demand for a product line. In this model, all consumers from one segment are 
assumed to be homogenous and possess identical preferences for consumer attributes (Train, 2009).  
Consumers’ utility, njU , in consumer n  is the aggregate of part-worth of observed explanatory 

variables, njx , of product j  and a stochastic factor nj , i.e. 

nj n nj njU x      (1) 
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Explanatory variables of old product models are fixed, while attribute variables of new product models 
could be optimized to achieve a better profit. Prices of both old and new product models are decisions 
of the manufacturer. n  is a vector of unobservable  coefficients and represents customers’ preference 
to be extracted from survey data. Under the first choice rule and with an independently and identically 
distributed extreme value of nj  the logit choice probability of customers in market segment g , 

choosing an alternative j among all competitive product models i , is derived as: 

( )
g gj

g gi
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gj x
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e

e
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   (2) 

With 1,2,...,k K denoting product models from the manufacturer’s product line , and gM denoting 

market size of market segment 1,2,...,g G , the aggregate demand of product model k over all G

segments is: 
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The revenue that the manufacuter obtains from product line   with demand kd  price kp  can then be 
formulated as:  
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Maximum likelihood method  

Maximum likelihood method could be employed to estimate parameter g , by selecting the set of 

values that maximize the likelihood function. The likelihood function ( )gL   is defined as the 

probability of each decision maker n  in the sample population of market segment g  choosing the 
alternative that was observed to have been chosen, i.e.: 
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where nk  refers to Equation (2), indicator 1nk  , if decision maker n  chooses alternative k , and 0 

otherwise. This information is collected from survey or actual sale data. It is more convenient to 
maximize log-likelihood function since nk  is a positive value and the log function is monotonically 

increasing. Maximizing ( )gL  is equivalent to maximizing the log-likelihood function ( )gLL  : 

1 1
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N J

g nk nk
n j
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
 (6) 

3.2 Costing model 

Activity base costing is employed to estimate the cost of product line fulfillment. The production 
activities carried out are identified during the process of purchasing components, transforming them 
into finished goods, and delivering them to customers. The consumed resources and costs incurred are 
assigned to activities. The overall costs comprise two main parts: material cost and cost that can be 
traced by activities. Unit material cost kmu for product k consuming material m can be obtained from 

the product’s bill of material (BOM). The quantity of material m consumed by the product line  is: 

1

( )
K

m k km
k

q d u


     (7) 

The demand kd is pre-estimated in the logit model. The direct material cost of all materials for product 
line  is: 
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where mc , material m unit price, is a function of purchasing quantity  mq  due to quantity discounts. In 

line with Schotanus et al. (2009), mc  is modeled as:  

0( )
( )m m

m

s
c q c

q      (9) 

where 0c  is the lowest price obtainable; s is the price spread;  is the steepness of the quantity 
discount rate.  
 
Labor cost and overhead cost can be traced and assigned based on the activities consumed under a 
hierarchical structure of activities (Schön, 2010).  Activity cost for providing all product models in the 
line is the aggregate of all activities at all levels, and it is modeled as: 

ln ln
1 1

( ) ( )
lNL

a

l n

C r u
 

      (10) 

where 1,2,...,l L denotes level of categorization, and 1,2,...,l ln N represents activity at level l . lnr

and lnu are the cost driver rate and cost driver volume of activity n  at level l respectively. The overall 

cost of product line  is: 

( ) ( ) ( )m aC C C        (11) 

3.3 Profit formulation  

The decision regarding retaining product mix, new product attributes, and prices is conceptually 
modeled as an optimization problem to maximize profit as follows:  

max ( , , ) ( , , ) ( , , )nj nj njx p R x p C x p         (12) 

 s.t.     0kp                                                       (13) 

          old                                                        (14) 

Variables in this function are: a binary vector  with length of the number of old product models, 
indicating the retention of product models from the old product line old ; one or more vectors of 
explanatory variables, njx , of a new product model; and price vector, kp , representing prices of the 

new product line. Explanatory variables, njx , could be continuous, discrete or mixed variables. Prices 

are assumed to be continuous and positive in this paper. The profit formula is nonlinear and contains 
both continuous and integer decision. Due to the complexity of the formula, heuristic algorithms, such 
as particle swarm optimization, are recommended to solve this optimization problem (Tsafarakis et al., 
2013).  

4 ILLUSTRATION 

The proposed model is applied to solve the product line design of HTC smartphone in a campus shop, 
which is considered a small market segment. Smartphones are popular consumer products with diverse 
customer preferences and tastes. Manufacturers keep refreshing their smartphone product lines to cater 
to changing consumer preferences. In this illustration, there are five HTC smartphone models available 
in the campus shop, but HTC is planning one new candidate model with several attributes 
undetermined. Considering the entire new product line’s profitability, HTC needs to determine 1) 
which of these five models should be retained to form a new product line?; 2) what attribute levels of 
the new product should be selected?; 3) what prices should be charged for each of selected models?.  
Table 1 list the smartphone attributes and their levels for both HTC and its competitors’ offerings in 
the campus shop. This was used in the customer survey and 100 responses were collected. Preference 
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values of attributes are estimated statistically, by inputting data of respondents’ choices and applying 
Logit model and maximum likelihood method. As exhibited in Table 2, the preference values of all 
attributes except price are positive, indicating that customers prefer higher levels of the corresponding 
attributes. Preference values of ‘HTC’, ‘Samsung’, ‘Apple’, ‘Blackberry’ and ‘Sony’ are mutually 
relative and only 

Table 1. Major Smartphone models for college students 

Brand 
CPU 

(GHz) 
RAM 
(GB) 

Memory 
(GB) 

Networ
k 

Size 
(mm) 

Camera 
(M pixel) 

Prices 
(USD)

Current 
product line 

HTC 1.5 2 16 3G 159.43 8 719.95
HTC 1.2 1 8 4G 144.43 5 508.30
HTC 1.5 1 16 4G 148.03 8 618.80
HTC 1 0.5 4 3G 135.98 5 338.30
HTC 1.7 1 64 3G 151.49 8 624.75

Competitors 
offerings 

Samsung 0.8 0.7 4 3G 133.65 5 253.30
Samsung 1.2 1 16 3G 141.67 8 428.80
Samsung 1.6 2 16 4G 171.21 8 720.80
Samsung 1.4 1 16 3G 153.77 8 551.65
Samsung 0.8 0.5 0.2 3G 119.08 2 135.15

Apple 1.2 1 16 4G 136.97 8 786.25
Apple 1 0.5 8 3G 129.25 8 654.00
Apple 1 0.5 8 3G 129.25 5 488.00

Blackberry 1 0.7 8 3G 125.30 5 448.80
Blackberry 1.2 0.7 4 3G 135.07 5 361.25
Blackberry 1.2 0.7 8 3G 132.59 5 590.75

Sony 1 0.5 0.3 3G 129.25 5 273.70
Sony 1 0.5 1 3G 123.00 8 278.80
Sony 1.4 0.5 1 3G 139.98 8 391.00

 
Table 2. Preference value for each attribute 

Attributes  HTC  Samsung  Apple  Blackberry  Sony  CPU  RAM
Preference value  1.489  1.231  3.638  2.523  0.394  4.153E‐4  1.567E‐4
Attributes  Storage  3G  4G  Size  Camera  Price   
Preference value  0.012  0.059  0.604  0.075  0.435  ‐0.008   

 
Table 3. Cost estimates of HTC’s smartphones 

Model ID Lowest cost (USD) Cost spread (USD) Cost of Phase in/out (USD) Discount rate

1 525 53 1,200 0.1
2 318 32 1,200 0.1
3 422 45 1,200 0.1
4 151 16 1,200 0.1
5 432 46 1,200 0.1
6 400 70 10,000 0.1

 
Table 4. New Smartphone's feasible attribute levels and corresponding costs 

Attributes CPU RAM Memory Network Size Camera 
Units GHz USD GB USD GB USD  USD mm USD M pixel USD
Lower level 1.7 28 1 22 16 24 3G 34 142 52 8 28
Upper level 2.5 46 2 28 32 56 4G 54 162 58 13 50
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differences among them matter because they are different levels of the same attribute ‘brand’. So do 
‘3G’ and ‘4G’.  Considering that a single campus is just a minor market segment of HTC 
smartphone’s entire market size, the wholesale prices of currently existing smartphones information 
(see Table 3) is used as the cost. The new smartphone possesses two kinds of components: fixed 
components and changeable components.  Fixed components are those that are predetermined and 
excluded in our decisions. Changeable components are those to be determined in this design model. 
The total material cost of the smartphone, except for changeable components, has the lowest cost of 
$400 (as shown in Table 3), a cost spread of $70 and a discount rate of 0.1. The new smartphone’s 
changeable attributes, their feasible levels, and corresponding costs are listed in Table 4. The activity 
cost of phasing in a new candidate smartphone model is assumed to be $10,000, while that of phasing 
out any current smartphone is $1,200 due to inventory, order cost and so on. The market size is 
assumed to be 10,000 based on the shop’s historical sales data. The Particle Swarm Optimization was 
implemented in Matlab to optimize variables as specified above. Each old product model is encoded to 
a bit; 1 indicating the attendance of the corresponding alternative and 0 the absence. As each 
changeable attribute is given two levels to select from, the new smartphone is encoded to a bit string 
with a length of the number of changeable attributes; 0 indicating the lower level of attribute and 1 the 
higher level.  
Based on the profit model, we investigate optimizing prices of the old product line, designing a new 
product line by selecting the old smartphones, introducing one new smartphone and setting prices for 
each product model in the product line. We compare the resulted profit with the current product line 
(see Table 5). It is found that the optimal prices of the old product line are $716.98, $499.86, $608.70, 
$335.67 and $613.15 respectively. The new prices are lower than old prices but not by much, and the 
total profit of the entire old product line improves slightly from $472,730 to $473,680. The original 
prices are nearly optimal and the incentive to change prices is not high. If we select a product mix 
from the old smartphones, add one new smartphone and optimize the prices simultaneously, the best 
profit is achieved when all the five old smartphone models are selected and the new smartphone has a 
technical specification of CPU of 2.5GHz, RAM of 1GB, Memory of 16GB, network of 3G, size of 
162mm and Camera of 13M Pixel. The prices of the old product models’ are reduced from $681.09, 
$495.11, $605.20, $278.48, and $613.71, respectively; the new product model’s price is set at $846.47.  

Table 5. Different strategies of product line adaptation and implications 

 
Current Status 

Repricing of current 
product line 

Integrated product line 
design 

Old product 
line 

[1 1 1 1 1] [1 1 1 1 1] [1 1 1 1 1]

New 
product’s 
attribute 

  
[1 0 0 0 1 1]

Price 
[719.95; 508.30; 618.80;  

338.30; 624.75] 
[716.98; 499.86; 608.70; 

335.67; 613.15] 
[681.09; 495.11; 605.20; 
278.48; 613.71; 846.47]

Demand 
[405; 337; 701; 489; 

892] 
[407; 355; 750; 420; 

966] 
[464; 311; 649; 574; 808; 

1,217]

Revenue 
[291,580; 171,300; 
433,780; 165,430; 

557,280]; 

[291,890; 177,480; 
456,090; 592,040] 

[316,400; 154,000; 393,000; 
159,900; 496,100; 1,030,500]

Cost 
[224,360; 113,230; 
312,410; 71,570; 

401,970] 

[225,570; 119,230; 
333,590; 71,750; 

434,660] 

[257,170; 104,500; 289,310; 
97,910; 364,330; 823,710]

Profit  
[67,170; 58,130; 
121,660; 70, 150; 

155,620] 

[66,330; 58,260; 
122,500; 69,220; 

157,370] 

[59,230; 49,500; 103,690; 
61,990; 131,770; 206,290]

Total Profit  $472,730 $473,680 $612,860
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The optimal prices and the market demand of the old product models decline because of the 
cannibalization by the new product model. With lower demand quantities, the average unit costs of the 
old product models increases due to economy of scale and, consequently, the profit from the old 
product model decreases.  Nevertheless, the total profit from the new product exceeds the decrease in 
the total profit from the old product models and the overall profit of the entire product line improves to 
$612,860. 

5 CONCLUSION 

This paper proposes an analytical model for product line design based on the observation that product 
lines are usually not designed from scratch but adapted by the regularly phasing in of new products 
and phasing out of old product models. The proposed model provides a decision making framework to 
help make more informed decisions regarding product line design for maximum profit. It delineates 
the intricate relationships between product line composition, attributes and prices of its constituent 
product models, and shows the consequent impact on market demand as well as fulfillment. Logit 
discrete choice model and activity-based costing method are utilized to quantify a product line’s 
demand and manufacturing costs, respectively. Product line design and pricing are then formulated as 
a mixed integer non-linear programming problem, in order to maximize the profit of the resulting 
product line. Heuristic algorithm, such as particle swarm optimization, is applied to identify the 
optimal new product(s), old products selection, and pricing. The proposed methodology is illustrated 
with a case study on smart phones on a university campus. The result demonstrates the feasibility of 
the proposed model and its potential of being utilized as a theoretical foundation to develop a decision 
support system to facilitate integrated and cross-functional decision making regarding product line 
design. Future research is needed to augment Logit model to more advanced choice based models that 
considers random preference values within a market segment. To better implement the model, future 
research is also needed to extend the current study to a bigger market segment, more product attribute 
levels, and more products to be introduced simultaneously.   
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