
ICED15  

 

 

 

A SEARCH AND OPTIMIZATION PERSPECTIVE ON 
CONCEPTUAL DESIGN 
Kroll, Ehud; Weisbrod, Gil 
Technion, Israel 
 

Abstract 
Conceptual design using the method of Parameter Analysis is related in this paper to the tree structure 
formed in C-space of C–K Theory. This, in turn, leads to an analogy to the search tree in branch-and-
bound optimization. We show that the classical branch-and-bound method can be generalized to 
include a dynamic and expanding state space, operators as design moves that are not pre-defined, and 
a cost function that consists of learning-based evaluation of the artifact. The generalized branch-and-
bound modeling can be used as a well-understood notional framework to study and compare human 
design methods and to develop computerized design assistants. 
 
Keywords: Conceptual design, Branch-and-bound, Parameter analysis 
 
Contact: 
Dr. Ehud Kroll 
Technion 
Aerospace Engineering 
Israel 
kroll@technion.ac.il 
 
  

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED15 
27-30 JULY 2015, POLITECNICO DI MILANO, ITALY 
 
 
 

Please cite this paper as:  
 Surnames, Initials: Title of paper. In: Proceedings of the 20th International Conference on Engineering Design 

(ICED15), Vol. nn: Title of Volume, Milan, Italy, 27.-30.07.2015 

1



ICED15 

1 INTRODUCTION 

Efficient exploration of many alternatives and the quest for the best solution are inseparable from 
design. We propose here that the branch-and-bound (B&B) method from operations research (OR) can 
be generalized to provide a conceptual framework to describe design processes. B&B (Hillier and 
Lieberman, 2005) is a technique for finding optimal solutions to integer programming problems with a 
very large number of solutions. The basic idea is to divide and conquer so only a small fraction of the 
feasible solutions needs to be examined. An original large problem is divided (the branching) into 
smaller and smaller sub-problems that are more manageable. The conquering is done by bounding 
how good the best solution in the subset of feasible solutions can be, and then discarding the subset if 
its bound indicates that it cannot possibly contain an optimal solution. B&B has been developed since 
the early 1960s, representing the simulation of human decision making as rational behavior: choosing 
an alternative that provides the highest utility, that is, the optimal one. 
Around the same time, problem solving as search became a major interest in artificial intelligence 
(AI). Weak search methods, capable of solving particular kinds of problems, were followed in AI by 
heuristic paradigms that could explore large solution spaces efficiently; yet, they were applied mostly 
to “toy problems” (Tong and Sriram, 1992). Simon (1972) introduced the notion of “bounded 
rationality” to denote the limitations due to incomplete information about the alternatives and their 
consequences, human cognition, and resources, all leading to making “satisficing” decisions rather 
than optimizing (Badke-Schaub and Eris, 2014). Simon’s “science of design” (Simon, 1969) thus 
incorporated his involvement in AI and shifted the focus from decision theory to problem solving and 
to subjectivity in the sense of using rules of thumb, heuristics (Hatchuel, 2001), in order to make the 
search for solutions more efficient. 
Over the last several decades, AI-based expert systems that incorporate domain knowledge have been 
developed to automate many design tasks; for example, VLSI (Gries, 2004), architectural (Mitchell, 
2001) and mechanical design (Li et al., 2013). An overview of AI applications to design can be found 
in (Antonsson and Cagan, 2001). Simultaneously, B&B was shown to be related to many search 
algorithms in AI (Nau et al., 1984) and to notions of breadth-first, depth-first, best-first, etc., which 
refer to the order of expanding the nodes of the search graph to form subsets of the solution space 
(Korf, 2010). Cagan et al. (1997) describe an approach and future work needed to integrate AI 
techniques and optimization (the OR approach). They note that AI techniques are limited in their 
search for general designs, while few problems can be solved by structured optimization methods 
alone. Therefore, only the combined AI and OR approach can provide the problem-specific reasoning, 
symbolic representations, and powerful numerical optimization search that are needed in design. 
The AI “design as problem solving” paradigm has prevailed for many years, attempting to 
approximate design processes with the tree-structured search space and the B&B heuristics used for 
simulating games or theorem proving. However, Pearl (1984) points to the fact that the emphasis of 
B&B methods is on the split-and-prune paradigm that is effective in establishing completeness and 
optimality, while the AI approach is concerned with the generate-and-test viewpoint, which is more 
relevant to creating or constructing new objects while searching for solutions. Heuristic search in the 
context of path-seeking problems has been studied both in OR and AI, with the purpose of increasing 
efficiency. The most common use of heuristic information has been the bounding functions that 
control the B&B search, as in AI’s popular heuristic shortest-path algorithm called A* (e.g., Russell 
and Norvig, 1995).  
Dym and Brown (2012, Ch. 6) show how AI-based problem-solving methods can be used to model the 
ways we address design tasks. In particular, they draw an analogy between searching game trees and 
design, including issues of search directions and strategies, characterizing design as path-finding 
problems and constraint-satisfaction problems, and the notion of using domain knowledge (in the form 
of heuristics) to guide the search process by pruning branches of the tree that are unlikely to yield a 
solution. Together with surveying some of the classical knowledge-based design systems from the 
1980s, they also point to some of the difficulties of solving real design problems by AI methods: 
“...we can model only the simplest design problems as a formal AI search that starts with a given: state 
space, well-defined goal nodes, start nodes, and operators.” 
In contrast to work that attempts to mimic human problem solving by a computer, fewer efforts have 
been reported on trying the opposite: applying notions of computer algorithms to understand human 
reasoning. Interestingly, one of the earliest papers to introduce the modern C–K design theory 
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(Hatchuel and Weil, 2002) contrasts Simon’s notion of bounded rationality with “expandable 
rationality”—the generation of new concepts and new knowledge—and claims that the B&B approach 
uses restrictive partitioning of the static search space and thus is unable to describe innovative design 
processes. To accommodate inventions and surprises, expansive partitioning should be applied by 
adding attributes to concepts and changing their definition. Perhaps the most notable suggestion made 
in their paper is to generalize the B&B method in order to enable expandability by allowing solutions 
that are not fully specified at the outset, expansive partitions that change the definition of concepts, 
assessment of concepts relative to existing and new knowledge (“K-validation”), and allowing failure 
of the design process. This work shows how a computer-based optimization scheme was the basis for 
deriving a design theory that is aimed at explaining human design processes. 
More recently, Kazakçi (2014) has argued that describing design by formal AI models hinders the 
study of creativity, because the traditional methods use a paradigm that he calls “the world as it is”. In 
contrast, design reasoning follows “the world as it can be” paradigm, for which the “imaginative 
constructivism” model is proposed. In it, new types of objects are imagined and new methods for 
building those objects are sought. In a sense, this work attempts to enrich the field of AI with insights 
from design theory. 
We can conclude that design processes in general cannot be treated as a mere search problem because 
the state space is not known, the goal state is not given, and often even the root state (the task) is ill-
defined and evolves together with its solution (Maher and Tang, 2003). In addition, the operators—the 
actions that transform one state into another—are usually not known a priori. However, this paper 
suggests that the notions of search algorithms can be very useful in studying and explaining design 
processes, in general, and how the number of design alternatives to be explored can be reduced before 
arriving at a satisfactory solution, in particular. Search and design problems also share a common 
theme of optimization in a broad sense. Design is not optimization in the “classic” computational 
context, but it is concerned with finding good solutions, not just any solution. It also tries to reach the 
solution in an efficient manner, that is, with minimum resources such as time and knowledge 
acquisition effort. Therefore, to better understand the efficiency aspects of design methods, an 
optimization framework needs to be consulted. 

2 THE PARAMETER ANALYSIS METHOD OF CONCEPTUAL DESIGN 

Parameter analysis (Kroll et al., 2001; Kroll, 2013) is an empirically-derived method for conceptual 
design. It was developed initially as a descriptive model after studying designers in action and 
observing that their thought process involved continuously alternating between conceptual-level issues 
(concept space) and descriptions of hardware (configuration space). The result of any design process is 
certainly a member of configuration space, and so are all the elements of the design artifact that 
appear, and sometimes also disappear, as the design process unfolds. Movement from one point to 
another in configuration space represents a change in the evolving design’s physical description, but 
requires conceptual reasoning, and this is done in concept space. The concept space deals with 
“parameters”, which in this context are functions, ideas and other conceptual-level issues that provide 
the basis for anything that happens in configuration space. Moving from concept space to 
configuration space involves a realization of the idea in a particular hardware representation, and 
moving back, from configuration to concept space, is an abstraction or generalization, because a 
specific hardware serves to stimulate a new conceptual thought. As will be shown later, concept space 
in PA is epistemologically different from C-space in C–K theory. 
To facilitate the movement between the two spaces, a prescriptive model was conceived, consisting of 
three distinct steps. The first step, Parameter Identification (PI), is the recognition of the most 
dominant issues at any given moment during the design process. These may include the dominant 
physics governing a problem, a new insight into critical relationships between some characteristics, an 
analogy that helps shed new light on the design task, or an idea indicating the next best focus of the 
designer’s attention. The second step is Creative Synthesis (CS), representing the generation of a 
physical configuration based on the issue recognized within the previous PI step. The configurations 
allow one to see new key parameters, which will again stimulate a new direction for the process. The 
third step is Evaluation (E), which facilitates moving away from a physical realization back to 
parameters or concepts. Evaluation is important because one must consider the degree to which a 
specific implementation represents a possible solution to the entire problem. Evaluation also uncovers 
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the weaknesses of the configurations and points out possible areas of improvement for the next design 
cycle. The unique role played by the evaluation step is elaborated later. 
PA’s repetitive PI–CS–E cycles are preceded by a Technology Identification (TI) stage of determining 
the most challenging functional aspect of the task and looking into fundamental technologies and 
physical principles that can be used to address it. A cursory listing of each candidate technology’s pros 
and cons follows, leading the designer to pick the one that seems most likely to succeed.  

3 THE C–K THEORY OF DESIGN 

C–K theory (Hatchuel and Weil, 2009) is a general descriptive model with a strong logical foundation, 
resulting in powerful expressive capabilities. The theory models design as interplay between two 
spaces, the space of concepts (C-space) and the space of knowledge (K-space). Four operators allow 
moving between and within these spaces to facilitate a design process: C→K, K→C, C→C and K→K. 
Space K contains all established, or true, propositions, which is all the knowledge available to the 
designer at any given moment. Space C contains “concepts”, which are undecidable propositions 
(neither true nor false) relative to K, that is, partially unknown objects whose existence is not 
guaranteed in K. A concept is a hypothesis of the following form: “there exists an entity x, for which 
the attributes A1, A2,...Ai are true in K”. 
Design processes aim to transform undecidable propositions into true ones by jointly expanding spaces 
C and K through the action of the four operators. This expansion continues until a concept becomes an 
object that is well defined by a true proposition in K. Expansion of C yields a tree structure, while that 
of K produces a more richly-networked pattern. This short introduction already shows that C–K theory 
provides a representation of the imaginable “states” in its C-space, and this representation happens to 
have a tree-shape, just like the structure of the state space in B&B. Moreover, C–K theory tracks in K-
space the knowledge expansion; i.e., all the knowledge acquired and used during the design process. 
In particular, the evaluation criteria of the product to be designed are stored and enriched in K-space. 
Hence C–K theory appears to be a powerful framework to interpret design activities. 

4 INTERPRETATION OF PARAMETER ANALYSIS WITH THE C–K 
FRAMEWORK 

A detailed account of interpreting PA by C–K theory is presented in (Kroll et al., 2014) and will be 
described here only briefly. It consists of translating each of PA’s steps—PI, CS and E—to a 
combination of C–K operators. This interpretation is based on the fact that because knowledge is not 
represented explicitly in PA and because a design should be considered tentative (undecidable in C–K 
terms) until it is complete, both PA’s parameters and configurations are entities of C–K’s C-space. 
Thus, the description of a C–K concept has been refined from having just a list of attributes to having 
two kinds of attributes: ideational (corresponding to PA’s parameters) and structural (PA’s 
configuration items). The general form of a concept in C–K becomes: “there exists an entity x, for 
which the ideational attributes P1, P2,… can be realized with the structural attributes S1, S2,…”.  
The creative synthesis (CS) step starts with an idea, a PA parameter, and results in a new configuration 
through a “visit” to K-space (Figure 1a). A basic premise of PA is that ideas cannot be directly 
evaluated in an effective manner; rather, they need to be implemented as configurations first. So, the 
evaluation (E) step (Figure 1b) begins with a C–K concept that includes structural attributes and 
attempts to deduce its specific behavior, from which it will make a decision as to how to proceed. 
Reasoning from behavior to decision, however, includes two intermediary steps that are the key to 
understanding how the evaluation controls the design process so that it always moves in the most 
promising direction. First, the specific behavior is used to establish possible new evaluation criteria, 
and those are applied (together with the existing, older ones) to all pending concepts to assign values 
to them. The values are not numerical, as B&B’s costs, but rather a metric that represents the 
designer’s judgment of the goodness and viability of the concept. Finally, a decision is made to move 
so as to maximize this value. 
The identification of new evaluation criteria is part of the actual learning done during the design 
process and is facilitated by having configurations to be evaluated. The combination of CS and E steps 
allows discovering unexpected behavioral aspects, or revealing that some known functional issues 
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have become more critical. New and critical issues in PA form the basis for the next PI step, as 
explained below, depending on the following four possible evaluation results: 

 
Figure 1. Interpreting (a) creative synthesis (CS) and (b) evaluation (E) as sequences of C–

K operators. Arrow numbers denote the order; rounded-corner boxes in C-space denote 
concepts generated by adding an ideational attribute (PA parameter) and square boxes 

stand for concepts with an added structural attribute (PA configuration). Dark background 
marks new knowledge generated 

1. If the concept’s behavior is as desired and nothing is missing, and the value of the concept is 
higher than that of any other concept, then the design process is complete. All current attributes 
of the concept are accepted, and there is no subsequent PI step. 

2. If an undesired behavior is detected, or something is missing in the concept, but its value is still 
the highest, then it should be improved by keeping its current attributes and adding a new 
ideational attribute in the next PI step (this is the most common occurrence), thus staying on the 
current path, as shown in Figure 2a. 

3. If the undesired behavior renders another existing concept more valuable (perhaps because the 
evaluation criteria have changed), then the current development path should be stopped and 
backtracking to a known but unexplored path will take place, so the next PI step will continue 
with the new highest-value concept (Figure 2b). 

4. If the value of all existing concepts and technologies is very low, then all their attributes should 
be rejected and backtracking to an unknown path will occur. The subsequent PI step will attempt 
to discover a new path by looking for a new core technology that had not been considered earlier 
(Figure 2c) or by re-examining the validity of the root concept itself, leading to a possible de-
partitioning—the emergence of a more general start node (Figure 2d), as demonstrated in (Kroll 
et al., 2014). 

5 ILLUSTRATION WITH A CASE STUDY 

The following real design task had originated in the defense industry. The design process was 
reconstructed as PA by one of the inventors, the second author of this paper (Weisbord and Rotkopf, 
2013). The need was to develop an airborne warhead for destroying concrete structures and it was 
required to be integrated into a given flight-certified aerodynamic configuration called “airborne 
body”, with fixed aerodynamic and other characteristics. 
A need analysis stage defined the task as penetration and detonation of the explosive charge inside the 
structure. For a given concrete strength, the following engineering requirements were generated (bold 
letters stand for actual numerical values): 
1. Required concrete penetration depth – t [m]. 
2. Minimum required weight of explosive – We [kg]. 
3. Given the airborne body impact angle relative to the horizon, β, the design should operate 

properly within an angle-of-attack range of ±α [°] relative to β. 
4. The maximum terminal velocity of the airborne body is Vt [m/s] and it is assumed to also be the 

impact velocity. 
5. Maximum weight is Wb [kg] (derived from the aircraft’s maximum takeoff weight). 
6. Airborne body length is Lb [m] and external diameter is Db [m], as in Figure 3a. 
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Figure 2. Interpreting PI as a sequence of C–K operators: (a) moving along the current path; 

(b) moving to a known but unexplored path; (c) starting over with a new, unknown 
technology; (d) de-partitioning the original root concept 

 
Figure 3. (a) Airborne body geometry; (b) a typical penetration projectile configuration (L-

length, D-outside diameter, N-nose performance coefficient, We-explosive weight) 

In what follows we use C–K theory’s terminology to describe the unfolding of the design process, so 
the word ‘concept’ will be used for all the designed artifacts, whether they have been created by 
adding ideational or structural attributes (see also the caption of Figure 1). 
Technology identification (TI) began with the designers identifying the most difficult aspect of the 
design task as C0 = penetrating concrete structures (and not, for example, detonation of the explosive 
charge, designing a safe and arm mechanism, or the method of deployment). Physical principles and 
core technologies for realizing the task were identified next. One of the well-known principles is based 
on converting kinetic energy to penetration work as formulated by Young’s model (Young, 1997), in 
which the penetration depth t is given as (shown simplified) t ∝ N∙(W/A)∙V, where N is a 
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dimensionless nose performance coefficient, W/A is the projectile’s weight-to-frontal area ratio, and V 
is the impact velocity. Choosing this principle for the design task at hand meant that the solution 
concept became C1 = converting kinetic energy to work by a penetration projectile. In a typical 
penetration projectile (Figure 3b), the internal cavity contains the explosive, so at the end of the 
penetration process, and provided that the projectile did not break (one of the challenges), the 
explosive detonates. 
Being familiar with penetration projectiles, the designers realized that there were two possible 
concepts they could use: C2 = an airborne body shaped as a penetration projectile, and C3 = a 
penetration projectile packaged inside an airborne body. Reviewing some pros and cons, C2 was 
chosen for further development. This terminated the TI stage and constituted the initial conditions for 
PA. 
This first parameter, idea, was realized by setting the length, diameter and explosive weight according 
to requirements 6 and 2, respectively (C4), as shown in Figure 4a. Evaluation next showed that the 
projectile would not penetrate the required concrete thickness, and that N, W/A and V could not be 
increased because they were fixed by the given airborne body. The decision made was to backtrack to 
C3 from the TI stage so as to increase W/A and N, and this yielded concept (in fact, what is a 
‘configuration’ in PA) C5, where a smaller D and heavier metals increased W/A and a pointed nose 
increased N (Figure 4b). Evaluating C5, it was found that penetration performance was better, but still 
did not meet the requirement. Analysis showed, however, that increasing the impact velocity by a 
certain ∆V could solve the problem. So, the next parameter (ideational attribute) was “increase the 
impact velocity by a rocket engine” (C6). The corresponding realization (C7) added structural 
attributes in the form of a specific rocket engine fitted to the back of the projectile and some 
dimensions that were adjusted accordingly, as shown in Figure 4c.  

 
Figure 4. Concepts C4 (a), C5 (b), C7 (c) and C9 (d). All are ‘configurations’ in PA terms 

The subsequent evaluation found that penetration performance was satisfactory, but two new problems 
emerged: rocket ignition had to be done at high altitude to allow the relatively long burn-time, 
potentially causing deviation of the trajectory from the required impact angle; and the amount of 
explosive was now less than the required We. Although adding stabilizers and/or a guidance unit 
might solve the problems, it would increase the cost, complicate the product and reduce its reliability. 
Another way to increase the impact velocity was needed. The designers responded with the idea of 
accelerating the projectile with a gun barrel (C8), which was realized as the configuration of Figure 4d 
(C9). Calculations and simulations showed that the penetration performance was as required, and burn-
time of the gunpowder was short so ignition could take place at low altitude (short distance to the 
target). However, the amount of explosive was now lower due to the reduced projectile diameter. The 
designers discussed the options with the customer and decided to reduce the explosive amount and 
carry on with further development of this solution. Major design challenges that remained were a 
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strong, yet lightweight gun barrel, an accurate means of measuring altitude above the target to fire the 
projectile, and an interface between the gun barrel and the airborne body to prevent sideways 
movement during recoil. 
The re-negotiation of requirement 2 that took place demonstrated that in a real design task, unexpected 
requirements and constraints may appear after the designers generate and evaluate solution 
alternatives, thereby increasing their (and perhaps also the customer’s) understanding of the problem 
and the scope of the design task. This well-known phenomenon is in-line with the often ill-defined 
nature of design problems and the necessity to evolve their definition together with the solution (Dorst 
and Cross, 2001; Maher and Tang, 2003). It also supports our earlier claim that design cannot be 
treated as mere search. 
Figure 5 shows the concept tree generated in C–K theory’s C-space for the case study. The root 
concept C0 led to several possible technologies: C1 was chosen for further development and the other, 
unexplored technologies are represented as a dashed arrow. The concept tree follows the above 
description, ending in concept C9. 

 
Figure 5. The concept tree generated for the case study. C9 was the solution generated 

6 DISCUSSION AND CONCLUSION 

PA, as illustrated here, appears to be an odd combination of design and search. It is a design process in 
the sense that there is no target solution at the beginning and surprises and discoveries are expected at 
each step, particularly through the evaluation of configurations. But its reasoning and strategy also 
share many features with B&B methods: PA incorporates opportunities and activities of diverging that 
seem similar to B&B’s branching (the tree of Figure 5 contains several alternative paths for reaching a 
solution, while handling smaller and smaller sub-problems as the design process progresses) and PA 
relies heavily on constantly evaluating the artifact, and this is analogous to B&B’s bounding by a cost 
function (notice how evaluating C4 caused pruning of the C2 branch, and evaluating C7 caused 
pruning of the C6 branch). Hence, studying PA helps to understand how B&B can be extended to 
design processes. To make this extension rigorous, we use a design theory, C–K, to better follow how 
PA actually helps to navigate strategically in the unknown state space and unknown goal state, just as 
B&B helps to traverse the space of complex optimization problems (with complex but known state 
space and goal state). 
Although we used a specific conceptual design method, its activities are generic: coming up with 
solution ideas, implementing them as configurations, evaluating the evolving design, comparing 
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alternatives, and choosing the most promising one. Therefore, it seems plausible that other design 
methods can be represented as generalized B&B search as well. 
The extensions to the “classical” B&B method that are required in order to generalize it so it can be 
applied to design processes are therefore as follows: 
1. Allow flexibility in defining the start node, 
2. Allow unknown goal states, 
3. Allow “branching” by design moves that are not pre-defined, 
4. Allow a non-numerical evaluation function (the “bounding”) that is subject to learning during the 

design process, 
5. Allow sub-tree “pruning” to be temporal (i.e., a pruned branch may be revisited later, as the 

design process unfold, if new knowledge is acquired). 
Recall the model of innovative design proposed by Kazakçi (2014), which allows the creation of new 
types of objects and new ways to construct them. This duality seems to resemble PA’s two synthetic 
moves: PI for adding ideational attributes to the artifact (i.e., changing the type of object), and CS for 
adding structural attributes (that is, coming up with the methods to realize the new type). Moreover, 
just as we have proposed to extend the conventional search and optimization methods to make them 
usable in design, Kazakçi too calls for a new framework (“Brouwer machine”) that allows “free 
choices”, and whose purpose is not to choose a best alternative among existing objects, but rather to 
choose the most interesting to explore among a set of novel definitions. 
There are several possible contributions and advantages that could result from considering conceptual 
design as extended and generalized B&B search. First, design processes need a strategy (that is, the 
designer needs to know how to proceed at any moment), and both AI and OR provide many well-
established and much-studied strategies. In the case of PA, we call it “steepest-first”; it is a depth-first 
with backtracking type of process, but the PI step controls it by addressing the more difficult and 
challenging issues first. The generalized B&B modeling thus helps to understand how PA provides 
guidance in the concept tree of C-space towards the goal.  
Secondly, computer programs use a clear logic and data representation according to which they 
operate, and these may be useful in explaining human design processes. Instead of analyzing design 
methods directly, we use an intermediate representation of the artifact based on the tree structure of C–
K’s C-space. This allows a convenient analogy to similar structures in B&B and AI-based searches. It 
would be interesting in the future to apply similar modeling to other design methods and compare 
them. A third contribution of looking at design from the AI perspective may be in building 
computerized design assistants. These programs may not need to be totally autonomous, of course, but 
rather guide the human designer in following the desirable strategy and managing and organizing 
some of the complexities of the large search spaces. Finally, modeling the design process as computer-
based extended B&B can serve as the basis for a tool for capturing design rationale. 
Some possible limitations of our work should also be noted. The example of this paper and other 
examples we studied tend to be quite simple, for convenience of presentation. Real-life situations are 
of course much more complex, and we cannot predict the consequences of applying the same 
modeling framework to cases where many goals may contradict and interact with each other. We also 
have not explored issues related to collaborative design, which may lead to further complications. 
Another weakness may also be the need to evaluate the evolving design artifact quantitatively. This 
“cost” or “value” function is quite straightforward notionally, but may be difficult to implement in 
practice. 
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