
13TH INTERNATIONAL DEPENDENCY AND STRUCTURE MODELLING CONFERENCE, DSM’11
CAMBRIDGE, MASSACHUSETTS, USA, SEPTEMBER 14 – 15, 2011

MODELING ARCHITECTURAL DEPENDENCIES TO
SUPPORT SOFTWARE RELEASE PLANNING
Robert L. Nord1, Ipek Ozkaya1, Nanette Brown1 and Raghvinder S. Sangwan2
1 Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA
2 Pennsylvania State University, Malvern, PA, USA

Organizations building products or systems that rely on software continue to demand increasingly
rapid innovation and development processes that enable them to adjust products and systems to
emerging needs. Release planning is a key activity in managing these processes. An essential aspect of
release planning is balancing the development of new capabilities to address user needs against
investment in system infrastructure and architecture to enable flexibility and maintainability.
Providing quantifiable insight and visibility into both the delivered capabilities as well as the emerging
quality of the software architecture is essential to product success. In this paper, we describe our use of
dependency structure and domain mapping matrices to model architectural dependencies. These
dependencies provide insight into the value of the capabilities being delivered over total effort to
better guide the process of release planning.

Keywords: Software architecture, iterative release planning, dependency analysis, Design Structure
Matrix (DSM), Domain Mapping Matrix (DMM), software economics

1 INTRODUCTION
The possible decisions over the course of release planning within any incremental and iterative
software development process involve the trade-off of delivering value early to the customer with
reducing cost by investing in infrastructure that will avoid rework in subsequent releases (Larman and
Basili, 2003). What is needed is quantifiable guidance that highlights the potential benefits and risks of
choosing one or the other of these alternatives or a blend of both strategies.
In this paper, we present our approach to provide guidance using dependency mapping and analytic
techniques that provide insight into the cost and value implications of specific iterative delivery
strategies. The intent is not to create a new life cycle development process, but to provide visibility
into the architectural elements on which the capabilities (also known as features) that provide
customer value depend, so that the stakeholders can make informed decisions based on cost and value.
We take dependencies into consideration, including dependencies between:
1. capabilities, including functional and quality attribute (i.e., non-functional) requirements
2. capabilities and architectural elements,
3. architectural elements.
Understanding these dependencies allows for optimization of development activities across the
releases of an iterative and incremental approach in support of the delivery of customer value (Denne
and Cleland-Huang, 2003).

2 APPROACH TO MODELING AND MANAGING DEPENDENCIES
Balancing short-term and long-term needs requires a viable economic strategy that provides guidance
on when to spend time designing versus delivering capabilities (Brown et al., 2010; Nord et al., 2011).
Dependency management has been studied at the level of code artifacts and in the context of system
engineering (Browning, 2001). It has also been studied in the context of requirements and design
traceability in support of managing iterations (Kortler et al., 2010). Applying dependency management
at the architecture level is beginning to show promising results due to increasing tool support for using
the design structure matrix (DSM) for architectural analysis (Hinsman et al., 2009).

159

ABSTRACT

To support balancing short-term versus long-term needs, we use a release planning dashboard shown
to the left and matrix-based modeling shown to the right in Figure 1.

Figure 1. Release planning dashboard and supporting matrix-based modeling

In addition to reasoning about capabilities in the current release (shown in the first row of the release
planning dashboard), we also consider modeling architectural elements (shown in the second row of
the release planning dashboard) - incorporating investment within the current release to prepare for
future releases. The quality of the architecture is assessed in the form of technical debt, that is, short-
cuts taken in design that may need to be reworked in the future (Brown et al., 2010).
Support for this form of release planning is provided through the use of design structure matrix-based
representations and analysis such as propagation cost, as illustrated to the right in Figure 1.
Propagation cost measures the percentage of system elements that can be affected, on average, when a
change is made to a randomly chosen element (MacCormack et al., 2008).
In order to reason about the cost and value of the alternative development paths, we need to represent
the release planning path in terms of the following properties:
� The release order of the increments in the path,
� Customer requirements delivered,
� Architectural elements delivered,
� Dependencies between elements scheduled for the current release,
� Dependencies between elements for current and previous releases, and between elements for

current and projected future releases.
The use of design structure matrices (DSMs) in software engineering has focused on understanding
design rules and has been increasingly incorporated into reverse engineering and architecting tools
(Lindemann, 2009). In our approach, DSMs represent dependencies between customer requirements,
and between architectural elements within the context of an iterative release planning exercise.
The implemented capabilities become the basis for computing the value delivered to the customer. The
value of a capability is computed as the weighted sum of the benefit to the end user when implemented
and the penalty incurred if postponed, where benefits and penalties are determined by the customer
(Wiegers 1999). Dependency analysis is used to determine the precedence in the implementation of
the features.
The cost of the implementation is a combination of the cost to implement the architecture elements
selected to be added in the release and the cost to rework pre-existing elements. Rework cost is
incurred when new elements are added to the system during a release, and one or more of the pre-
existing elements have to be modified to accommodate the new ones. This includes elements that can
be identified with their direct dependencies on the new elements as well as those with indirect
dependencies represented by the propagation cost (Bachmann et al., 2007). Dependency analysis is
used to determine the precedence in the implementation of the architectural elements and to analyse
the cost of rework.
Not only do we need to look at dependency analysis within a single domain of requirements or
architectural elements, we need to represent dependencies between customer requirements and
architectural elements within the context of an iterative release planning exercise. Understanding the

160

dependencies between capabilities and architectural elements enables staged implementation of
technical infrastructure in support of achieving stakeholder value. Domain mapping matrices (DMMs)
represent this inter-domain mapping (Danilovic and Browning, 2007; Danilovic and Sandkull, 2005).
DSM and DMM analysis can be combined to reach deeper conclusions about inter and intra-domain
dependencies in a dual-domain context (Bartolomei et al., 2007). In this case, we are looking at return
on investment as the value of capabilities delivered over total effort.
When we contemplate a particular step along a release path, we start with an initial selection of
requirements and/or architectural elements. To understand the cost and value implications of the
potential choice, we need to navigate dependencies.
We need to navigate within and among the domains in either direction, from requirements to
architectural elements in a value-driven approach or from architectural elements to requirements in a
cost-driven approach.
� Taking a value-driven approach, given a selection of requirements, dependency analysis within the

requirements domain allows us to determine requirements precedence and grouping. Dependency
analysis from the requirements domain to the architecture domain allows us to determine which
architectural elements need to be implemented in support of the requirements.

� Taking a cost-driven approach, dependency analysis within the architectural domain allows us to
determine precedence and grouping with respect to architectural elements. Dependency analysis
from the architecture domain to the requirements domain allows us to determine which
requirements are supported by the implemented architectural elements.

We also need to manage changing dependencies over time, comparing dependencies in the current
release to those in previous releases to calculate cost of rework, and comparing dependencies in the
current release to those projected in future releases to calculate technical debt. Any rework undertaken
in the current release would go towards paying off the technical debt accumulated in the past.

3 MODEL STUDY
We conducted an exploratory analysis of a model problem to quantify the technical debt outcomes of
alternate release strategies. We picked the Management Station Lite (MSLite) (Sangwan et al., 2008)
system for the study because we have experience with the system and access to the architecture
artifacts.
MSLite is a hardware-based field system for controlling a building’s internal functions, such as
heating, ventilation, air conditioning, access, and safety that automatically monitors and control the
building’s internal functions. The system users are facilities managers, and the system broadly
performs the following functions:
� Manage a network of hardware-based field systems used for controlling building functions.
� Issue commands to configure the field systems.
� Define rules on the basis of property values of field systems that trigger reactions to reset these

values.
� Trigger alarms notifying appropriate users of life-critical situations.
We used this system to establish metrics for quantifying architecture quality in an earlier study where
we used architecture structure metrics based on dependency analysis with propagation cost (Brown et
al., 2011).
Metrics alone do not give guidance about how to optimize system development over time. Here, we
used the propagation cost metrics from the earlier work, and used the analysis to model the impact of
technical debt and pay-back.
We considered the development of the model problem according to three software development paths
that characterize the dependencies associated with choosing a singular value-focused or cost-focused
strategy, or a blend of both strategies with a focus on integrated return on investment.
� Path 1: value focused. Development focused on delivering the high value capabilities as soon as

possible, making expedient decisions and deferring implementation of architectural elements.
Releases were planned to occur evenly over the course of development (every two iterations).
Architectural elements were implemented only when they could no longer be delayed, in this case,
when the acceptance test cases, representing the quality attribute requirements, required them.

161

� Path 2: cost focused. Development focused on implementing architectural elements in such a way
as to minimize rework, and added capabilities as a by-product of when the supporting elements
were in place. By carefully considering dependencies, the amount of rework is zero.

� Path 3: integrated return on investment. Development focused on delivering the high value
capabilities and pulled in the needed architectural elements on demand to support the capabilities.

Figure 2 shows the value of capabilities delivered over total effort for each of the three paths over five
releases.

Figure 2. Value of capabilities delivered over total effort

The total implementation effort of the system independent of rework is depicted as 100% cost on the
x-axis of the figure. The additional cost over 100% reflects the rework or expense to deal with the
technical debt.
Iterations are uniform duration and reflect cadences of development effort. In this case, there are ten
iterations spanning development, each iteration representing 10% of the release cost. The product
owner asks for the high priority capabilities and the developers say what is possible given the allotted
resources. Developers plan at the granularity of tasks to develop elements that are needed to
implement a capability.
Each path releases five increments of the product over the course of development according to their
own timeline. Releases reflect stakeholder value and so are not uniform in duration.
� Path 1 shows high value during the first two releases, but the delivery of value tapers off as

subsequent releases take longer, an indication of the rework needed to deal with the growing
complexity of dependencies.

� Path 2 shows there is no value delivered to end users early on, as the team focuses on the
architecture. Once the architecture is in place, the team settles into a rhythm of releasing high
value capabilities every two iterations. In the ideal case, this path would have 100% value at 100%
cost since there is zero rework. The extra 10% cost is a reflection of the granularity of the
capabilities and elements and how they are allocated to iterations and releases.

� Path 3 shows that the combined emphasis on high value capabilities and architecture to manage
dependencies makes delivery more consistent over time.

The first few releases of path 1 have an advantage compared to path 3 since we are getting more value.
However, the expedient choices that defer architecture decisions accumulate so we have more debt to
deal with at the end of path 1 (160% vs. 130%).
Path 3 outperforms path 2 for most of the development cycle. Path 2 pulls ahead at the end and has
less debt to deal with (110% versus 130%). However, factoring in the cost of delaying the capabilities
could make path 3 preferable at the end. And if additional money could not be allocated beyond that
projected at the 100% mark, path 3 would have delivered 89% value whereas path 2 would have been
capped at 52%.

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160

Path 1

Path 2

Path 3

Cu
m

ul
at

iv
e

Va
lu

e(
as

 %
)

Cumulative Cost (as %)

162

Figure 3 shows the cadence of iterations per release over time. Each path releases five increments at
differing intervals dependent on when there are sufficient capabilities to deliver value to the
stakeholders (whether value to customers in the marketplace or value to downstream developers
getting releases early for them to do their work).

Figure 3. Release cadence

The first two releases of path 1 take two iterations, or 20% of the cost. Subsequent releases take longer
at four iterations, an indication of the rework needed to re-architect as quality attribute requirements
are considered. Path 2 is development focused, and just as iterations can be time-boxed, it is
reasonable to expect releases in this context to have more uniform duration since they are not subject
to market forces. For path 3, given the variability of the granularity of packaging marketable
capabilities and the architectural elements they depend on, it can be expected that releases do not
follow a regular cadence.
Another way of looking at the data in Figure 2 is to see what value the customer is accruing for a
given cost. At 40% of the cost, path 1 has released two increments with 47% of the value, and path 3
has released one increment with 31% of the value. Path 2, with the focus on architecture has yet to
produce any customer-oriented capabilities, and thus no value. At 100% of the cost, path 3 has
achieved 89% value and is projected to take 3 more iterations to release the final increment. Path 2 has
achieved 52% value and is projected to take one additional iteration to complete. Path 1, has achieved
67% value, and is projected to take 6 more iterations (spanning two releases) to complete.
The choices to make along the path between the competing interests of cost and value to meet the
needs of a specific customer are situational. In certain contexts, a focus on value and early delivery
might be the correct choice, to enable for example, the release of critically needed capabilities or to
gain market exposure and feedback. In other contexts, delayed release in the interest of reducing later
rework cost might be the choice that better aligns with project and organizational drivers and concerns.
This analysis provides visibility into the dependencies to support making informed choices.

4 SUMMARY AND FUTURE WORK
Our exploratory analysis demonstrates that dependency metrics can be extracted from the architecture
and represented in the form of a DSM. DMM analysis can augment DSM analyses and can be used to
represent the dependencies between capabilities and architectural elements to support iterative release
planning where the ability to adjust courses of action is essential as the project progresses.
Based on these initial results, our research will continue with the following goals:
� Scaling techniques to model larger systems.
� Determining how much modeling is enough?
� Dealing with uncertainty and adjusting course over time.
� Tool support to transition these techniques into practice.

ACKNOWLEDGMENT
The Software Engineering Institute is a federally funded research and development center sponsored
by the US Department of Defense.

0

10

20

30

40

1 2 3 4 5

Path 1

Path 2

Path 3

Release

Co
st

 p
er

 re
le

as
e

(a
s %

)

163

REFERENCES
Bachmann, F., Bass, L., and Nord, R. (2007). Modifiability Tactics, (CMU/SEI-2007-TR-002).

Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University.
Bartolomei, J., Cokus, M., Dahlgren, J., de Neufville, R., Maldonado, D., and Wilds, J. (2007).

Analysis and Application of Design Structure Matrix, Domain Mapping Matrix, and
Engineering System Matrix Frameworks, Massachusetts Institute of Technology Engineering
Systems Division, June.

Brown, N., Nord, R., and Ozkaya, I. (2010). Enabling Agility through Architecture, Crosstalk
Magazine, Nov/Dec.

Brown, N., Cai, Y., Guo, Y., Kazman, R. , Kim, M., Kruchten, P., Lim, E. , MacCormack, A., Nord,
R., Ozkaya, I., Sangwan, R., Seaman, C. , Sullivan, K., Zazworka, N. (2010). Managing
Technical Debt in Software-Reliant Systems, FSE/SDP Workshop on the Future of Software
Engineering Research, Santa Fe, November.

Brown, N., Nord, R., Ozkaya, I. and Pais, M. (2011). Analysis and Management of Architectural
Dependencies in Iterative Release Planning. 9th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2011), June.

Browning, T.R. (2001). Applying the Design Structure Matrix to System Decomposition and
Integration Problems: A Review and New Directions, IEEE Transactions on Engineering
Management, 48(3).

Danilovic, M., and Browning, T.R. (2007). Managing complex product development projects with
design structure matrices and domain mapping matrices, International Journal of Project
Management, 25, 2007.

Danilovic, M., and Sandkull, B. (2005). The use of dependence structure matrix and domain mapping
matrix in managing uncertainty in multiple project situations, International Journal of Project
Management, 23, 2005.

Denne, M., and Cleland-Huang, J. (2003). Software by Numbers: Low-Risk, High-Return
Development, Prentice Hall, 2003.

Hinsman, C., Sangal, N., and Stafford, J. (2009). Achieving Agility Through Architecture Visibility,
in LNCS 5581/2009, Architectures for Adaptive Software Systems, pp. 116-129.

Kortler, S., Helms, B., Berkovich, M., Lindemann, U., Shea, K., Leimeister, J.M., and Krcmar, H.
(2010). Using MDM-Methods in Order to Improve Managing of Iterations in Design Processes,
12th International Dependency and Structure Modelling Conference, DSM’10, July.

Larman, C., and Basili, V.R. (2003). Iterative and Incremental Development: A Brief History, IEEE
Computer, 36(6), 47-56.

Lindemann, U. (2009). Technical DSM Tutorial, 2009. http://dsmweb.org.
MacCormack, A., Rusnak, J., Baldwin, C. (2008). Exploring the Duality between Product and

Organizational Architectures: A Test of the Mirroring Hypothesis, Harvard Business School,
October 10 (Version 3.0).

Nord, R., Brown, N., Ozkaya, I. (2011). Architecting with Just Enough Information, Sixth Workshop
on SHAring and Reusing architectural Knowledge (SHARK 2011). In: Proceedings of the
International Conference on Software Engineering (ICSE) 2011. Honolulu, HI (USA), May 23,
ACM.

Sangwan, R., Neill, C., Bass, M., and El Houda, Z. (2008). Integrating a software architecture-centric
method into object-oriented analysis and design, Journal of Systems and Software, 81, May,
727-746.

Wiegers, K. (1999). First Things First: Prioritizing Requriements, Sofwtare Development.

Contact: Robert L. Nord
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA, USA
Phone: +1 (412) 268-1705, Fax: +1 (412) 268-5758
e-mail: rn@sei.cmu.edu, www.sei.cmu.edu

164

INVEST ON VISUALIZATION

Modeling Architectural DependenciesModeling Architectural Dependencies
to Support Software Release Planning

Robert L. Nord1, Ipek Ozkaya1, Nanette Brown1

Raghvinder S. Sangwan2

1Software Engineering Institute, Carnegie Mellon University, USASo t a e g ee g st tute, Ca eg e e o U e s ty, US
2Pennsylvania State University, USA

INVEST ON VISUALIZATION

IndexIndex

• Vision
• Analysis of Architectural Dependencies• Analysis of Architectural Dependencies
• Measurable Insights into Delivery
• Results and Open Issues
• Summary

13th International DSM Conference 2011- 2

165

INVEST ON VISUALIZATION

Guiding Scenario underestimated

First capabilities Then, sound design

Guiding Scenario
re-architecting costs

need to monitor

neglected cost of
delay to market

technical debt to
gain insight into

life-cycle efficiency

13th International DSM Conference 2011- 3

First, design up front Then, capabilities

INVEST ON VISUALIZATION

Focus on Value

Standard iteration management in agile development processes

Focus on Value

� functional, high-priority stories allocated first.

Velocity
accumulated technical
debt impacts ability to

8

10

12

nt
 d

el
iv

er
ed

Velocity debt impacts ability to
deliver

2

4

6

na
l r

eq
ui

re
m

e n

inability to
keep the
tempo

0
1 2 3 4 5 6 7

Fu
nc

tio

Iterations

p

Tracking and monitoring mechanism is solely based on customer capabilities
delivered.

13th International DSM Conference 2011- 4

166

INVEST ON VISUALIZATION

Focus on Cost

Standard iteration management in phase-based development processes

Focus on Cost

� up-front requirements and design tasks allocated first.

12

Velocity

6

8

10

12

en
ts

 d
el

iv
er

ed

delayed
customer
d li

0

2

4

1 2 3 4 5 6 7on
al

 re
qu

ire
m

e delivery

1 2 3 4 5 6 7

Fu
nc

ti o

Iterations taking on some debt
can increase tempo

No explicit and early tracking and monitoring mechanisms that is development
artifact specific.

13th International DSM Conference 2011- 5

INVEST ON VISUALIZATION

Vision

Focus on Value

Vision
Manage architectural
dependencies with
dependency structure

10
12

Velocity

Focus on Value

Focus on Integrated ROI

p y
matrices (DSMs)

0
2
4
6
8
0

1 2 3 4 5 6 7

V l it Use metrics to
Focus on Cost

6
8

10
12

Velocity Use metrics to
monitor and focus
development tasks

Ability to

0
2
4
6

1 2 3 4 5 6 7

Ability to
adjust course
with empirical

basis

13th International DSM Conference 2011- 6

1 2 3 4 5 6 7

167

INVEST ON VISUALIZATION

Dependency Managementp y g

Dependencies between
capabilities & supporting
architectural elements

Understanding the dependencies between
capabilities and architectural elements
enables staged implementation of technical

f finfrastructure in support of achieving
stakeholder value.

D d i b t D d l i ithi th hit t lDependencies between
architectural elements

Dependency analysis within the architectural
domain enables determination of
precedence and grouping with respect to
architectural elementsarchitectural elements.

Dependencies between
capabilities

Dependency analysis within the
requirements domain enables determination p q
of requirements grouping and precedence.

13th International DSM Conference 2011- 7

INVEST ON VISUALIZATION

Modeling Architectural Dependencies

Capabilities supported
by an element

Modeling Architectural Dependencies
Elements needed to
support a capability

by an element

DSM – requirements

13th International DSM Conference 2011- 8

DSM – architectural elements

DMM – requirements to elements

168

INVEST ON VISUALIZATION

Analyzing Architectural DependenciesAnalyzing Architectural Dependencies

Total cost = F(Ci, Cr), a function of
implementation and rework costimplementation and rework cost.
Implementation cost is given for all
individual architectural elements.
Rework cost for release n is computed:Rework cost for release n is computed:
• SUM(Cr(Ek)) for all new elements Ek

• Cr(Ek) = SUM (Cr(Ej)) for all pre-existing
elements Eelements Ej

• Cr(AEj) = D(Ej, Ek) * Ci(Ej) * Pc(n-1)
where D() is # dependencies and
Pc is propagation cost.Pc is propagation cost.

Making dependencies visible earlier in the development life cycle
accompanied by metrics improves communication of architecture quality.

Pc =

n2

p y p q y
Metrics alone do not give guidance about how to optimize value over time.
We can improve project monitoring by providing quantifiable quality models
of the architecture during iteration planning

13th International DSM Conference 2011- 9

of the architecture during iteration planning.

INVEST ON VISUALIZATION

Measurable Insights into Delivery -1Measurable Insights into Delivery 1

13th International DSM Conference 2011- 10

169

INVEST ON VISUALIZATION

Measurable Insights into Delivery -2Measurable Insights into Delivery 2

13th International DSM Conference 2011- 11

INVEST ON VISUALIZATION

Results Open Issues

The rework algorithm is directional
and represents an effort to formalize

What are the appropriate proxies of
complexity that affect cost of

Results Open Issues

and represents an effort to formalize
the impact of architectural
dependencies.

complexity that affect cost of
change?

Rework cost is a relative value, used
to compare alternative paths and to
provide insight into architectural

How do we incorporate uncertainty
and the forecast of rework in the

d l?provide insight into architectural
quality across releases within a
given path.

model?

A key aspect of managing strategic
technical debt is the ability to
quantify degrading architecture

How do we characterize the
economics of architectural violations
across a long-term roadmap, rather

quantify degrading architecture
quality and the potential for future
rework as each release is planned.

than enforce compliance for each
release?

13th International DSM Conference 2011- 12

170

INVEST ON VISUALIZATION

SummarySummary

Exploratory analysis demonstrates that dependency metrics, such as
propagation cost can be extracted from the architecture and represented inpropagation cost, can be extracted from the architecture and represented in
the form of a DSM.
DMM analysis can augment DSM analyses and can be used to represent the
dependencies between capabilities and architectural elements to supportdependencies between capabilities and architectural elements to support
iterative release planning where the ability to adjust courses of action is
essential as the project progresses.
Based on these results our research will continue with the following goals:Based on these results, our research will continue with the following goals:
• Scaling techniques to model larger systems
• Determining how much modeling is enough
• Dealing with uncertainty and adjusting course over time
• Tool support to transition these techniques into practice

13th International DSM Conference 2011- 13© 2011 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY
OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR O SS O U OS O C , C US , O
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the
rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should
be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The
Government of the United States has a royalty-free government-purpose license to Go e e t o t e U ted States as a oya ty ee go e e t pu pose ce se to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license
under the clause at 252.227-7013.

14© 2011 Carnegie Mellon University

171

