
INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED11
15 - 18 AUGUST 2011, TECHNICAL UNIVERSITY OF DENMARK

PRODUCT PLATFORM AUTOMATION FOR OPTIMAL
CONFIGURATION OF INDUSTRIAL ROBOT FAMILIES

Mehdi Tarkian1, Johan Ölvander1, Xiaolong Feng2 and Marcus Pettersson
(1) Linköping University, Sweden

2

(2) ABB Corporate Research, Sweden

ABSTRACT
Product platform design is a well recognized methodology to effectively increase range and variety of
products and simultaneously decrease internal variety of components by utilizing modularization. The
tradeoff between product performance and product family commonality has to be carefully balanced in
order to for the company to meet market requirements and simultaneously obtain economy of scale.
This paper presents a framework based on high fidelity analyses tools that concurrently optimize an
industrial robot family as well as the common platform. The product family design problem is
formally stated as a multi-objective optimization problem, which is solved using a multi-objective
Genetic Algorithm.

Keywords: Automated design, multidisciplinary design optimization, parametric CAD

1. INTRODUCTION
Product family design based on modularization has for a long time been a well recognized method to
address the demands of mass customization [1]. Based on the concept of product platforms, it is
possible to deliver products within a short time frame and have a broad product range to meet specific
customer requirements while maintaining low development and manufacturing costs [1]. A potential
drawback of product families is that the performance of individual members are reduced due to the
constraints added by the common platform, i.e. parts and components need to be shared by different
family members.

This paper focuses on quantitative approaches where the product family design problem is formally
stated as an optimization problem where high fidelity analyses tools are used to find a tradeoff
between degree of commonality and product performance. The optimization problem involves
balancing performance of the members of the product family against cost savings during design and
possible re-use of modules in the family.

The outline of the paper is as follows: Following the introduction, section 2 explains the scope of
the paper by describing the concept of product family and platform design and the research conducted
in the global research arena. A brief outline of how the identified obstacles ought to be tackled is
given. In section 3, an overview of the field of Multidisciplinary Design Optimization (MDO) and
Knowledge Based Engineering (KBE) is presented. These techniques are two important enablers to
pursue practical product family design and optimization. The design procedures and hurdles of
modular industrial robot design are presented in section 4. The automated framework along with the
optimization procedures adopted is described in section 5. Finally, in section 6 the paper is concluded.

2. PLATFORM DESIGN
The definitions of product platform are plenty and since it is a fundamental term in this paper the

following definition has been chosen; “the use of a standard module set between different products is
known as a platform” [2]. Thereby, a platform is the set of standard components, manufacturing
processes, and/or assembly steps that are common in a set of products. The overall aim with product
family design is to reduce cost due to the commonality between the variants. However, there is always

a trade-off between commonality and performance of individual family members [3] & [4].
There are many benefits or reasons for modularity, e.g. the twelve modular drivers described in [5].

However, most of them have economic implications, either in the design and development stage, in
purchasing, during manufacturing or in the aftermarket. In the literature there are many indices defined
to measure the degree of modularity within a product family, see [6]. A commonality index is typically
based on different parameters such as the number of common components, the component
manufacturing volume, the component costs, the manufacturing processes, and so on. The leading
principle of the indices is to provide an estimate of the cost savings within a family.

2.1. Modularization
Jose and Tollenaere [7] describe modularization as “an approach to organize complex designs and

process operations more efficiently by decomposing complex systems into simpler portions”.
Modularization as a way to save cost is by no means a new phenomenon. For instance, the truck
manufacturer Scania has been working successfully with modularization and the concept of product
families since the forties [1]. Much research in product family design has been qualitative to its nature.
Hence according to Jose and Tollenaere [7], “today the methods for platform product development are
not practical and future results can be obtained with an integral methodology using a practical design
representation linked to an optimization methodology”. Thus, this paper makes an effort to presents a
quantitative approach where product family design is formulated as a formal multi-objective
optimization problem.

Before initiating the modular design process, the product has to be evaluated for whether being
appropriate for modular design. The modularity level of the product is then determined and strategies
for modular design are carried out. To assure practical use of the outlined framework in industry, tight
interaction with commercial CAE and simulation tools are of greatest importance. In order to
accomplish system optimization incorporating various simulation tools, the concept of
Multidisciplinary Design Optimization has been adopted, which will be discussed in the following
section.

3. MULTIDISCIPLINARY DESIGN OPTIMIZATION
Li and Huang [8] recognize that by using different platform strategies such as commonality,

modularity and scalability, product platforms can be developed and customized with different
flexibility for realizing mass customized products [8]. This enabler is termed adaptive platform. Li and
Huang also coined the terms scalable modules and instance module, established to achieve adaptive
platforms. Furthermore, in the design of complex and tightly integrated engineering products it is
essential to be able to handle cross-couplings and synergies between different subsystems [9]. A
typical example of such products is mechatronic machines like industrial robots. To effectively design
and develop such products, efficient tools and methods for integrated and automated design are needed
throughout the development process. Multidisciplinary Design Optimization (MDO) is one promising
technique that has the potential to drastically improve such a concurrent design. Giesing et al. [10]
have defined MDO as “a methodology for the design of complex engineering systems and subsystems
that coherently exploits the synergism of mutually interacting phenomena”.

3.1. Knowledge Based Engineering for Design of Engineering Products
Knowledge-Based Engineering defines a wide range of methods and processes and could be

described in several ways depending on the application focus. In the literature there are various
definitions that strive to highlight the multiple sides of KBE. Chapman et al. [11] define KBE as “an
engineering method that represents a merging of object oriented programming (OOP), artificial
intelligence (AI) techniques and computer-aided design technologies, giving benefit to customized or
variant design automation solutions”. It therefore presents great potential for improving the product
development process as well as reducing the time-to-market, thanks to an enhanced effectiveness of
computer aided engineering systems.

It is the authors’ opinion that KBE is a means to achieve design reuse and automation, and thereby
create prospects for a holistic perspective throughout the design process.

A holistic product perspective by means of design reuse and automation is needed in order to
effectively manage product complexity and to introduce MDO. In this field, KBE is believed to be a
powerful tool [12]. In the coming sections methods for design automation are proposed.

3.2. Dynamic Top-Down Modeling
By introducing KBE techniques a new mean of CAD modeling is introduced, referred to here as

dynamic top-down modeling. When applying a dynamic top-down development process, the actual
CAD models can be generated from pre-described High Level CAD templates (HLCt). The critical
information on how the HLCt should be instantiated is stored in the inference engine [14]. The
geometry model is divided into sub-models that are linked to each other in a hierarchic relational
structure [15]. Various components can be attached dynamically to the model and their shape altered
by the inherited design variables, supporting the concept of scalable modules by Li and Huang [8].
This process continuous until the geometry is completely defined.

4. DESIGN APPLICATION: INDUSTRIAL ROBOTS
The mechanical structure of a modular industrial robot consists of a base followed by a series of

modular structure links. Each module consists of drive-train components (servo actuator, combining
precision Harmonic Drive gearing with highly dynamic servo motors). Major components of the robot
controller are power units, rectifier, transformer, axis computers and a high level computer for motion
planning and control.

Designing industrial robots is a complex process involving tremendous modeling and simulation
effort. For all the various domains of robot design, the geometry plays a significant role as input
provider.

 To more effectively understand and manage the complexity of this technology and find the optimal
solution for a family of robots faster, a joint novel design framework is being developed at ABB and
Linköping University, see Johansson et al. [16], Petterson et al [17], and Tarkian et al. [13].

4.1. Modular Geometry approach for Modular Industrial Robots
One outcome of modularity within a product family is increase of variety and decrease of

components. The same principle is adopted here for the modeling of the product family. Since the
geometries are saved as HLCts and instantiated with unique internal design variables, the number of
model variants is effectively increased by sharing few geometric templates between the model
variants.

By importing the HLCt geometries, the robot is defined in three steps, see Figure 1. Firstly the
number of axes is determined in a user interface, defining the skeleton model of the robot, stored in the
Datum HLCt and placed according to the logic of the inference engine. The type of Component HLCt
for each axis is then decided and an appropriate structure, from Structure HLCt, is chosen in the final
step. The model of the robot is thereby transformed from an empty initial model into a complete model
in three steps, as shown in Figure 1.

Component HLCtDatum HLCt Structure HLCt

Inference Engine

Knowledge Base

User Interface

Robot Model
Structure Model

1

2

3

Link V1 folder

T1

T2

-

Wireframe Model

Wireframe folder

T1

Tx

-
Actuator folder

T1

Tx

-
Link V3 folder

T1

T2

-

Component Model

Figure 1. Relations between the robot models and the HLCt libraries.

4.2. Dynamic Model
To simulate the dynamic properties of a robot, a dynamic model has to be utilized. The dynamic

model in the outlined framework is made using an in-house simulation tool developed at ABB. The
motion of the rigid manipulator can be described by

() (,) () ()Q M q q V q q G q B q= ⋅ + + +   (1)
where M is the inertia matrix, V is the vector of Coriolis and centrifugal forces, G is a vector of gravity
forces and B is a vector of viscous friction forces. q is a vector of generalized coordinates e.g. angular
position of each joint in the manipulator. For more information about dynamic models and trajectory
planning for robots see [18] & [19].

In the Newton-Euler formulation [18], link velocities and acceleration are iteratively computed,
forward recursively.

() ()
() () ()

, 1 , 1 , 1 , 1

, 1 , 1 , , 0 0

Ti
e i i e i i i i i i i i

T Ti i
c i i e i i i ci i i i ci

a R a r r

a R a r r R g

ω ω ω

ω ω ω

− − + +

− −

= + × + × ×

= + × + × × −




 (2)

When the kinematic properties are computed, the force and torque interactions between the links are
computed backward recursively from the last to the first link.

() ()

1
1 ,

1 1
1 , 1 1,

i
i i i i c i

i i
i i i i i ci i i i ci i i i i i

f R f m a

R f r R f r I Iτ τ α ω ω

+
+

+ +
+ + +

= +

= − × + × + + ×
 (3)

Where ω is the angular velocity and ω angular acceleration, ae and ac describe the acceleration at
the end and at the center of each link respectively, f and τ describe the force and torque between each
link respectively. R is the rotational matrix, I the mass inertia, g0

4.3. Automated and Holistic Design approach

 the gravity acceleration and r the
positional vector.

The geometric and dynamic models are seamlessly integrated through a user interface, where
various engineering aspects of the robot are analyzed concurrently. Furthermore the geometrical and
dynamical aspects of the robot components are stored in a component library, see Figure 2.

Figure 2. Weight and dynamic properties are concurrently computed following parametric input in the user
interface.

5. OPTIMIZATION
In this section the problem formulation is presented following the selection of optimization algorithm

for the specified problem, as well as the actual optimization framework.

5.1. Problem Formulation
The problem formulation consists of concurrently optimizing the performance and commonality

level of a product family consisting of four robots. The optimization variables are choice of servo
actuators for axes 1, 2 and 3 as well as a coefficient defining the relation between length of link 2 and

link 4 (see figure 3), amounting to overall 16 optimization variables for the entire product family. The
optimization problem is limited to three axes in order to restrict the design space for the optimization
algorithm. Ideally all 7 joint could be optimized using the same approach depicted. The four robots’
reach and payload requirements are visualized in Table 1.

Robot 1 Robot 2 Robot 3 Robot 4

Reach [mm] 760 860 960 1060
Payload [kg] 3 5 10 14

Table 1. Payload and reach requirements of the robot family

The problem is multi objective with the performance and commonality being the objective
functions. The performance objective, f1

2f

, is the sum of cycle time (CT) and the robot weight (Weight)
for all four robots. The performance objective is to be minimized, hence low weight and low cycle
time is preferred. The commonality objective is to maximize number of common components in the
robot family, for both the links and actuators. is the percent commonality, ranging from 0 to 100.

1 1 2

2 1 2

()

100 ()

1,2,3,4

i i

shared shared

f CT Weight

Link Actuator
f k k

Link Acutator
i

λ λ= +

= ⋅ +

=

∑
∑ ∑

∑ ∑
 (4)

jλ & uk are weighting factors where 1uk =∑ . The weighting factors uk have been chosen to prioritize
link share prior to actuator share. The weight and CT are normalized and jλ chosen to balance the
weighting.

5.2. Multi-Objective Genetic Algorithm
The presented problem consists of discrete variables, and the objectives and constraints are

represented by non-linear functions where no analytical derivatives are available. Therefore a Genetic
Algorithm has been chosen since generally speaking non-gradient methods are applicable to a broader
range of problems as they do not rely on assumptions on the properties of the objective function such
as differentiability and continuity, etc. The basic idea of Genetic Algorithms is the mechanics of
natural selection [20]. Each optimization variable is coded into a gene as for example a real number or
a string of bits. The corresponding genes for all parameters form a chromosome, which describes each
individual. Each individual represents a possible solution, and a set of individuals form a population.
In a population, the fittest individuals have the highest probability of being selected for mating.
Mating is performed by combining genes from different parents to produce a child, called a crossover.
Then there is also the possibility that a mutation might occur. Finally the children are inserted into the
population to form a new generation.

Moreover since the tradeoff between performance and commonality is difficult to quantify
beforehand, preferably the algorithm utilized should generate a Pareto frontier of the design solutions.
Optimization methods that can handle this type of problems in general are Genetic Algorithms and
specifically Multi-Objective Genetic Algorithms [21]. There are also many examples in the literature
where GA:s and MOGA:s are applied to platform design problems [22]& [23]. In this paper NSGA-II
are used as the optimizer [24].

5.3. Optimization framework
In previous work [13], a robot design framework has been utilized to design a single optimal

modular robot for a specific task and a set of requirements. A product family optimization requires
further evaluations to converge since the family members are simulated in sequence. Also, to reach
convergence, the number of evaluations increases due to increased number of design variables.
Consequently, to shorten the optimization time, the earlier framework [13] had to be completely
reworked, which will be further depicted in following sections.

5.3.1. Geometry Database
Although commercial CAD tools are well suited to generate high fidelity geometry for various

analyses tools, they often require extensive update time. Therefore, a geometry database has been
created to eliminate the lengthy simulation times required. The database is created by evaluating and
storing an array of various geometric configurations. Meaning that the shape and number of the robot
structure are varied leading to a new robot configurations of which the geometric properties are stored
as illustrated in Figure 3. The geometric properties include mass, center of gravity and inertia.

In Figure 3 all links subjected to parametric modification are colored white. For link 1 and link 3 the
shape is altered by modifying the type of actuator. These are modified by altering discrete values
ranging from 1 to 15 which will automatically insert the actual detailed actuator geometry which is
stored as an HLCt. The logic stated in the inference engine will then update the internal design
variables of the links housing the actuator. For link 2 and link 4 the shape of the structure is modified
by varying the lengths between 200-450 [mm] and 200-400 [mm] respectively.

The geometry database for each link is computed independently. The separate mass properties of the
links are then assembled together during the optimization framework to represent the complete robot.

Geometry
Database

Link 1
Motor 1:15

Link 2
200-450

Link 3
Motor 1:15

Link 4
200-400

Base
Motor 1:15

User Interface

l1

l2

Geometric Model

Figure 3. A geometry database is created by altering the design variables of the geometric model through a user
interface.

5.3.2. Dynamic Database
Another bottleneck in the optimization framework is the dynamic simulation. A method to shorten

the simulation time is thereby of importance. Storing the design configurations in a corresponding
dynamic database as done for the geometric database is however not a promising approach. This is due
to the kinematic and dynamic couplings between the links, both forward and backward recursively as
stated in formula (2) and (3). Thereby the total number of design alternatives stored in the database
would amount to tens of thousands. Consequently, in the following section another proposal is made
to minimize the number of calls to the dynamic model.

5.3.3. Distributed Optimization
To further speed up optimization process, distributed optimization is utilized. The members of the

robot family are thereby each distributed to a slave PC, as illustrated on a simplified flow chart in
Figure 4. The family optimization presented in this paper consists of one master PC and four slaves. If
the number of family members is increased, so will the number of slaves, presenting an effective
means to keep the optimization time low irrespective of the number of individuals in the product
family.

The optimization process starts by the master PC generating an initial population, declared as initial
Design Variables in Figure 4. The Design Variables are utilized to calculate the commonality
objective as stated in (4) and also sent to the slaves. The analyses of the robots take place in parallel,
which upon completion will return the performance objective to the master, see Figure 4.

Geometry
Database

Static Sim

Static
OK?

Motion SimPerformance

∑
Pe

rfo
rm

an
ce

Slave PC 1

Slave PC 3

Slave PC 4

Master PC

Slave PC 2

Dynamic
Database

New
Robot?

Design
Variables

C
om

m
un

al
ity

O
bj

ec
tiv

e
Fu

nc
tio

n

O
pt

im
iz

at
io

n
A

lg
or

ith
m

No

No

Figure 4. To speed up the evaluation process, the robot family is concurrently computed on 4 slave PCs.

For each slave PC the motion and static simulation results are stored in a dynamic database. As a
result when a previously evaluated design is suggested by the optimization algorithm, the results will
be retrieved from the dynamic database, thereby skipping both the static and motion simulations. If the
design variables represent a new robot then the mass properties are retrieved from the geometry
database and sent for static simulation. The static simulation includes a range of robot work space
positions. The static simulation evaluates if the chosen motors are strong enough to withstand the
gravitational forces. If the configuration does not meet the gravitational forces, then the performance
objective is given a penalty value and the dynamic simulation will not be initiated, and hence the
computational burden reduced. The results are stored in the dynamic database and the performance
objective generated.

If the static simulation is successful then the geometrical data from the geometry database model is
sent for motion simulation. The geometry database is used to parameterize the matrix and vectors in
equation (1). The equation of motion for the robot is implemented in a dynamic simulation program
which also includes path and trajectory planner and calculates properties such as torques,
accelerations, speed and cycle-times. A set of motion cycles are simulated for each robot and the
results are stored in the dynamic database and a performance objective calculated.

Although distributed computing presents faster evaluation, it is a complex procedure which needs to
be properly setup otherwise it will lead to an ineffective and failed framework. The communication
process involving the master and the slave is illustrated in more detail in Figure 5. The process starts
by an initial population generated and the master sending the design variables to the slave as shown in
Figure 4. The Master will then wait for a predefined time to receive a signal from the slave indicating
that the design variables have been retrieved. If not, the slave PC will be terminated and another slave
PC will be initiated to compute the performance objective.

The slave has a defined time at his disposal for each robot evaluation. The computation is
terminated by the master as soon the time runs out. The reason for this constraint is due to some
motion simulations taking several minutes to perform, whilst a preferred simulation only should take
seconds. The lengthy simulation time is due to real time properties of the motion simulator, where
simulation time is equal to the cycle time of each motion. Consequently, robot individuals consisting
of barely strong enough motors to pass the static simulation requirement are still too weak to generate
fast cycle times during the motion simulation. These individuals are weak and thus the simulation is
terminated when the simulation time surpasses the time limit. A penalty is then given to the individual,
which is stored in the dynamic database and the performance objective is calculated, see Figure 5.

Design variables
to slave 1

Slave 1 reading?

Slave 1 done?

Performance

false

false

Wait x [s]?

Choose new slave
PC

Wait y [s]?

Penalize

Yes

Yes

C
om

m
unication process for slave 1

C
om

m
unication process for slave 2

C
om

m
unication process for slave 3

C
om

m
unication process for slave 4

Figure 5. Communication process between the master and the slave.

5.4. Results
The outlined optimization framework is utilized to search for the Pareto frontier of the presented

problem. The performance objective is to be minimized with the aim of decreasing the robot weight
and cycle time, while the commonality objective is to be maximized to increase module sharing
amongst the robots. In order to search for the global optimum, the following number of individuals
and generations has been evaluated:

 Opt. 1 Opt. 2 Opt. 3 Opt. 4
Individuals 40 60 100 300
Generations 200 200 200 200

Table 2. Four sets of individuals evaluated.

Final results of the Pareto frontiers, up to the 5th Figure 6 rank, are visualized in , where not
surprisingly, as the number of individuals increase, the Pareto frontiers move to more optimal
locations. However this movement is progressively minimized, suggesting that about 100 to 300
individuals is sufficient for finding the optimal Pareto frontier.

20 40 60

17

18

19

20

21

22

Commonality

Performance
40 Individuals
60 Individuals
100 Individuals
300 Individuals

Figure 6. Pareto frontiers for 40, 60, 100 & 300 individuals.

 Judging from the 1st Figure 7 order Pareto frontier in , the algorithm is well suited to find solutions
for both high commonality and best performance. In the robot family with best performance (1), the
highest reach robot has more powerful actuators, while the smaller robots are capable in performing
the pre-set trajectories with smaller actuators, hence weighing less. However the commonality level is

low. For the robot family with highest commonality (2), the actuators and arm lengths are selected in
order to maximize commonality, however the overall performance is worse. The arrows on the right
side of figure 7 indicate modules that are shared within the product family.

Commonality
(1)

(2)Performance

(2)

(1)

18.0

17.8

17.6

17.4

17.2

17.0

16.8
20 30 40 50 60

Figure 7. Pareto front of the product family, with best performance (1) and highest commonality (2). The shared
modules are marked with an arrow.

6. DISCUSSION & CONCLUSION
In this paper a quantitative approach is presented where robot product family design is formulated as

a formal multi-objective optimization problem. The product family design is based on tightly
integrated set of high fidelity physics based models, supporting design reuse and automation. By
utilizing the automated and reusable models, a MDO framework is established, facilitating automatic
search for optimal robot families. An optimization case has been set up where the combination of
discrete component selections invokes changes in the geometric structure, together with constraints in
the dynamic simulation. The links and power train for a robot family has been optimized, and a Pareto
frontier generated by applying the multi-objective genetic algorithm NSGA-II. Based on the objective
functions a Pareto front is generated, presenting a range of robot families where the performance and
commonality objectives have different importance. Hence, one major advantage of the presented
method is that the balance between performance and commonality can be determined after generating
the Pareto frontier. Therefore critical decisions can be made later in the design process, allowing
engineers to gather more knowledge about the product under evaluation.

For future work, continuous variables of the actuators, e.g. maximum torque and angular velocity
can be taken into consideration during the optimization. By taking the continuous variables into
account the life time estimation of the drive train components can be computed and added to the
performance objective. However by increasing the number of design variables, the optimization
framework will have to undergo further modifications to reduce simulation time. To introduce several
hierarchical layers of optimization, as well as meta-models for high fidelity models will be some of the
options which should be examined further.

Another future investigation is the development of cost measurements, by estimating cost by taking
commonality, component prices and life cycle in consideration.

REFERENCES
[1] Andersson, S. and Sellgren, U., "Modular product development with a focus on modelling and

simulation of interfaces," Design Society – Workshop on Product Structuring, Copenhagen,
January 2003.

[2] Jose A, Tollenaere M (2005) Modular and platform methods for product family design: literature
analysis. J Intell Manuf 16:371–390

[3] Fellini R., Kokoloras M., Papalambros P., Perez-Duarte A., Platform Selection Under Performance
Bounds in Optimal Design of Product Families, Journal of Mechanical Design, vol. 127, pp. 524-
535, July, 2005.

[4] Nelson, S., Parkinson M., Papalambros P., Multicriteria Optimization in Product Platform Design,
Journal of Mechanical Design, vol. 123, pp 199-204, June 2001.

[5] Erixon G., Erlandsson A., von Yxkull A., Östgren B. M., Modulindela produkten, (in Swedish),
Industrilitteratur, 1994.

[6] Thevenot H., Simpson T., Commonality indices for product family design: a detailed comparison,
Journal of Engineering Design, Vol. 17, No. 2, pp 99–119, 2006.

[7] Jose A, Tollenaere M (2005) Modular and platform methods for product family design: literature
analysis. J Intell Manuf 16:371–390

[8] Li L., Huang G.Q., Newman S.T. A cooperative coevolutionary algorithm for design of platform-
based mass customized products (2008) Journal of Intelligent Manufacturing, 19 (5), pp. 507-519.

[9] Bowcutt, K.G., “A Perspective on the Future of Aerospace Vehicle Design”, AIAA 2003-6957,
12th AIAA International Space Planes and Hypersonic Systems and Technologies, Dec. 2003,
Norfolk, VA, USA

[10] Giesing, J.P., Barthelemy, J-F.M., “A summary of industry MDO applications and needs”, AIAA
1998-4737, AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Sept. 1998, St. Louis, MO, USA

[11] Chapman, C.B., Pinfold, M. “The application of knowledge based engineering approach to the
rapid design and analysis of an automotive structure”, Journal of Advances in Engineering
Software, Vol. 32, Issue 12, December 2001, pp. 903-912, Elsevier

[12] Liening, A., Blount, G.N., “Influences of KBE on the aircraft brake industry”, Aircraft
Engineering and Aerospace Technology, Vol. 70, No. 6, 1998, pp. 439-444, MCB University
Press

[13] Tarkian, M. Ölvander, J., Feng X., Pettersson M., “Design Automation of Modular Industrial
Robots”, ASME CIE09, San Diego, USA, Sept. 2009

[14] Hopgood, A. A., Intelligent Systems for Engineers and Scientists, Second Edition, Florida, CRC
Press LLC., 2001

[15] Ledermann, C., Hanske, C., Wenzel, J., Ermanni, P., Kelm, R., ”Associative parametric CAE
methods in the aircraft pre-design”, Journal of Aerospace Science and Technology, Vol. 9, Issue 7,
October 2005, pp. 641-651, Elsevier

[16] Johanson B., Ölvander J., Pettersson M., ”Component Based Modeling and Optimization for
Modular Robot Design”, ASME DAC’07, Las Vegas, USA, September 4-7, 2007.

[17] Petterson M., Andersson J., Krus P., “Methods for Discrete Design Optimization”, proceedings of
ASME DETC'05, Design Automation Conference, , Long Beach, California, USA, Sept. 2005.

[18] Sicilano B., Modeling and Control of Robot Manipulators, Springer Verlag, 2001.
[19] Spong W. Mark and Vidyasagar M Robot Dynamics and Control, John Willey & Sons Inc, pp

65-71, 1989.
[20] Goldberg, D., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison

Wesley
[21] Deb K., Multi-objective Objective Optimization using Evolutionary algorithms, Wiley and Sons

Ltd, 2001.
[22] Fujita K., Yoshida H., Product Variety Optimization Simultaneously Designing Module

Combination and Module Attributes, Concurrent Engineering: Research and Applications, 12(2),
pp105-118, 2004.

[23] Jiao J., Zhang Y., Wang Y., A Generic Genetic Algorithm for product family design, Journal of
Intelligent Manufacturing, DOI:10.1007/s10845/-007-0019-7, 2007.

[24] Deb, K., Pratap. A, Agarwal, S., and Meyarivan, T. A fast and elitist multi-objective genetic
algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation, 6(2), 181-197, 2002.

