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ABSTRACT 
Product platform design is a well recognized methodology to effectively increase range and variety of 
products and simultaneously decrease internal variety of components by utilizing modularization. The 
tradeoff between product performance and product family commonality has to be carefully balanced in 
order to for the company to meet market requirements and simultaneously obtain economy of scale. 
This paper presents a framework based on high fidelity analyses tools that concurrently optimize an 
industrial robot family as well as the common platform. The product family design problem is 
formally stated as a multi-objective optimization problem, which is solved using a multi-objective 
Genetic Algorithm. 

Keywords: Automated design, multidisciplinary design optimization, parametric CAD 

1. INTRODUCTION 
Product family design based on modularization has for a long time been a well recognized method to 
address the demands of mass customization [1]. Based on the concept of product platforms, it is 
possible to deliver products within a short time frame and have a broad product range to meet specific 
customer requirements while maintaining low development and manufacturing costs [1]. A potential 
drawback of product families is that the performance of individual members are reduced due to the 
constraints added by the common platform, i.e. parts and components need to be shared by different 
family members. 

This paper focuses on quantitative approaches where the product family design problem is formally 
stated as an optimization problem where high fidelity analyses tools are used to find a tradeoff 
between degree of commonality and product performance. The optimization problem involves 
balancing performance of the members of the product family against cost savings during design and 
possible re-use of modules in the family.  

The outline of the paper is as follows: Following the introduction, section 2 explains the scope of 
the paper by describing the concept of product family and platform design and the research conducted 
in the global research arena. A brief outline of how the identified obstacles ought to be tackled is 
given. In section 3, an overview of the field of Multidisciplinary Design Optimization (MDO) and 
Knowledge Based Engineering (KBE) is presented. These techniques are two important enablers to 
pursue practical product family design and optimization. The design procedures and hurdles of 
modular industrial robot design are presented in section 4. The automated framework along with the 
optimization procedures adopted is described in section 5. Finally, in section 6 the paper is concluded. 

2. PLATFORM DESIGN 
The definitions of product platform are plenty and since it is a fundamental term in this paper the 

following definition has been chosen; “the use of a standard module set between different products is 
known as a platform” [2]. Thereby, a platform is the set of standard components, manufacturing 
processes, and/or assembly steps that are common in a set of products. The overall aim with product 
family design is to reduce cost due to the commonality between the variants. However, there is always 

 
 



a trade-off between commonality and performance of individual family members [3] & [4]. 
There are many benefits or reasons for modularity, e.g. the twelve modular drivers described in [5]. 

However, most of them have economic implications, either in the design and development stage, in 
purchasing, during manufacturing or in the aftermarket. In the literature there are many indices defined 
to measure the degree of modularity within a product family, see [6]. A commonality index is typically 
based on different parameters such as the number of common components, the component 
manufacturing volume, the component costs, the manufacturing processes, and so on. The leading 
principle of the indices is to provide an estimate of the cost savings within a family.  

2.1. Modularization 
Jose and Tollenaere [7] describe modularization as “an approach to organize complex designs and 

process operations more efficiently by decomposing complex systems into simpler portions”. 
Modularization as a way to save cost is by no means a new phenomenon. For instance, the truck 
manufacturer Scania has been working successfully with modularization and the concept of product 
families since the forties [1]. Much research in product family design has been qualitative to its nature. 
Hence according to Jose and Tollenaere [7], “today the methods for platform product development are 
not practical and future results can be obtained with an integral methodology using a practical design 
representation linked to an optimization methodology”. Thus, this paper makes an effort to presents a 
quantitative approach where product family design is formulated as a formal multi-objective 
optimization problem. 

Before initiating the modular design process, the product has to be evaluated for whether being 
appropriate for modular design. The modularity level of the product is then determined and strategies 
for modular design are carried out. To assure practical use of the outlined framework in industry, tight 
interaction with commercial CAE and simulation tools are of greatest importance. In order to 
accomplish system optimization incorporating various simulation tools, the concept of 
Multidisciplinary Design Optimization has been adopted, which will be discussed in the following 
section. 

3. MULTIDISCIPLINARY DESIGN OPTIMIZATION 
Li and Huang [8] recognize that by using different platform strategies such as commonality, 

modularity and scalability, product platforms can be developed and customized with different 
flexibility for realizing mass customized products [8]. This enabler is termed adaptive platform. Li and 
Huang also coined the terms scalable modules and instance module, established to achieve adaptive 
platforms. Furthermore, in the design of complex and tightly integrated engineering products it is 
essential to be able to handle cross-couplings and synergies between different subsystems [9]. A 
typical example of such products is mechatronic machines like industrial robots. To effectively design 
and develop such products, efficient tools and methods for integrated and automated design are needed 
throughout the development process. Multidisciplinary Design Optimization (MDO) is one promising 
technique that has the potential to drastically improve such a concurrent design. Giesing et al. [10] 
have defined MDO as “a methodology for the design of complex engineering systems and subsystems 
that coherently exploits the synergism of mutually interacting phenomena”.  

3.1. Knowledge Based Engineering for Design of Engineering Products 
Knowledge-Based Engineering defines a wide range of methods and processes and could be 

described in several ways depending on the application focus. In the literature there are various 
definitions that strive to highlight the multiple sides of KBE. Chapman et al. [11] define KBE as “an 
engineering method that represents a merging of object oriented programming (OOP), artificial 
intelligence (AI) techniques and computer-aided design technologies, giving benefit to customized or 
variant design automation solutions”. It therefore presents great potential for improving the product 
development process as well as reducing the time-to-market, thanks to an enhanced effectiveness of 
computer aided engineering systems.  

It is the authors’ opinion that KBE is a means to achieve design reuse and automation, and thereby 
create prospects for a holistic perspective throughout the design process.  



  

A holistic product perspective by means of design reuse and automation is needed in order to 
effectively manage product complexity and to introduce MDO. In this field, KBE is believed to be a 
powerful tool [12]. In the coming sections methods for design automation are proposed. 

3.2. Dynamic Top-Down Modeling 
By introducing KBE techniques a new mean of CAD modeling is introduced, referred to here as 

dynamic top-down modeling. When applying a dynamic top-down development process, the actual 
CAD models can be generated from pre-described High Level CAD templates (HLCt). The critical 
information on how the HLCt should be instantiated is stored in the inference engine [14]. The 
geometry model is divided into sub-models that are linked to each other in a hierarchic relational 
structure [15]. Various components can be attached dynamically to the model and their shape altered 
by the inherited design variables, supporting the concept of scalable modules by Li and Huang [8]. 
This process continuous until the geometry is completely defined. 

4. DESIGN APPLICATION: INDUSTRIAL ROBOTS 
The mechanical structure of a modular industrial robot consists of a base followed by a series of 

modular structure links. Each module consists of drive-train components (servo actuator, combining 
precision Harmonic Drive gearing with highly dynamic servo motors). Major components of the robot 
controller are power units, rectifier, transformer, axis computers and a high level computer for motion 
planning and control. 

Designing industrial robots is a complex process involving tremendous modeling and simulation 
effort. For all the various domains of robot design, the geometry plays a significant role as input 
provider. 

 To more effectively understand and manage the complexity of this technology and find the optimal 
solution for a family of robots faster, a joint novel design framework is being developed at ABB and 
Linköping University, see Johansson et al. [16], Petterson et al [17], and Tarkian et al. [13]. 

4.1. Modular Geometry approach for Modular Industrial Robots 
One outcome of modularity within a product family is increase of variety and decrease of 

components. The same principle is adopted here for the modeling of the product family. Since the 
geometries are saved as HLCts and instantiated with unique internal design variables, the number of 
model variants is effectively increased by sharing few geometric templates between the model 
variants. 

By importing the HLCt geometries, the robot is defined in three steps, see Figure 1. Firstly the 
number of axes is determined in a user interface, defining the skeleton model of the robot, stored in the 
Datum HLCt and placed according to the logic of the inference engine. The type of Component HLCt 
for each axis is then decided and an appropriate structure, from Structure HLCt, is chosen in the final 
step. The model of the robot is thereby transformed from an empty initial model into a complete model 
in three steps, as shown in Figure 1. 
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Figure 1. Relations between the robot models and the HLCt libraries. 

4.2. Dynamic Model 
To simulate the dynamic properties of a robot, a dynamic model has to be utilized. The dynamic 

model in the outlined framework is made using an in-house simulation tool developed at ABB. The 
motion of the rigid manipulator can be described by 

( ) ( , ) ( ) ( )Q M q q V q q G q B q= ⋅ + + +           (1) 
where M is the inertia matrix, V is the vector of Coriolis and centrifugal forces, G is a vector of gravity 
forces and B is a vector of viscous friction forces. q is a vector of generalized coordinates e.g. angular 
position of each joint in the manipulator. For more information about dynamic models and trajectory 
planning for robots see [18] & [19]. 

In the Newton-Euler formulation [18], link velocities and acceleration are iteratively computed, 
forward recursively. 
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When the kinematic properties are computed, the force and torque interactions between the links are 
computed backward recursively from the last to the first link. 
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Where ω is the angular velocity and ω  angular acceleration, ae and ac describe the acceleration at 
the end and at the center of each link respectively, f and τ describe the force and torque between each 
link respectively. R is the rotational matrix, I the mass inertia, g0

4.3. Automated and Holistic Design approach 

 the gravity acceleration and r the 
positional vector. 

The geometric and dynamic models are seamlessly integrated through a user interface, where 
various engineering aspects of the robot are analyzed concurrently. Furthermore the geometrical and 
dynamical aspects of the robot components are stored in a component library, see Figure 2. 

 
Figure 2. Weight and dynamic properties are concurrently computed following parametric input in the user 
interface. 

5. OPTIMIZATION 
In this section the problem formulation is presented following the selection of optimization algorithm 

for the specified problem, as well as the actual optimization framework. 

5.1. Problem Formulation 
The problem formulation consists of concurrently optimizing the performance and commonality 

level of a product family consisting of four robots.  The optimization variables are choice of servo 
actuators for axes 1, 2 and 3 as well as a coefficient defining the relation between length of link 2 and 



  

link 4 (see figure 3), amounting to overall 16 optimization variables for the entire product family. The 
optimization problem is limited to three axes in order to restrict the design space for the optimization 
algorithm. Ideally all 7 joint could be optimized using the same approach depicted. The four robots’ 
reach and payload requirements are visualized in Table 1. 

 
Robot 1 Robot 2 Robot 3 Robot 4 

Reach [mm] 760 860 960 1060 
Payload [kg] 3 5 10 14 

Table 1. Payload and reach requirements of the robot family 

The problem is multi objective with the performance and commonality being the objective 
functions. The performance objective, f1

2f

, is the sum of cycle time (CT) and the robot weight (Weight) 
for all four robots. The performance objective is to be minimized, hence low weight and low cycle 
time is preferred. The commonality objective is to maximize number of common components in the 
robot family, for both the links and actuators.  is the percent commonality, ranging from 0 to 100. 
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jλ  & uk are weighting factors where 1uk =∑ . The weighting factors uk  have been chosen to prioritize 
link share prior to actuator share. The weight and CT are normalized and jλ  chosen to balance the 
weighting. 

5.2. Multi-Objective Genetic Algorithm 
The presented problem consists of discrete variables, and the objectives and constraints are 

represented by non-linear functions where no analytical derivatives are available. Therefore a Genetic 
Algorithm has been chosen since generally speaking non-gradient methods are applicable to a broader 
range of problems as they do not rely on assumptions on the properties of the objective function such 
as differentiability and continuity, etc. The basic idea of Genetic Algorithms is the mechanics of 
natural selection [20]. Each optimization variable is coded into a gene as for example a real number or 
a string of bits. The corresponding genes for all parameters form a chromosome, which describes each 
individual. Each individual represents a possible solution, and a set of individuals form a population. 
In a population, the fittest individuals have the highest probability of being selected for mating. 
Mating is performed by combining genes from different parents to produce a child, called a crossover. 
Then there is also the possibility that a mutation might occur. Finally the children are inserted into the 
population to form a new generation. 

Moreover since the tradeoff between performance and commonality is difficult to quantify 
beforehand, preferably the algorithm utilized should generate a Pareto frontier of the design solutions. 
Optimization methods that can handle this type of problems in general are Genetic Algorithms and 
specifically Multi-Objective Genetic Algorithms [21]. There are also many examples in the literature 
where GA:s and MOGA:s are applied to platform design problems [22]& [23]. In this paper NSGA-II 
are used as the optimizer [24]. 

5.3. Optimization framework 
In previous work [13], a robot design framework has been utilized to design a single optimal 

modular robot for a specific task and a set of requirements. A product family optimization requires 
further evaluations to converge since the family members are simulated in sequence. Also, to reach 
convergence, the number of evaluations increases due to increased number of design variables. 
Consequently, to shorten the optimization time, the earlier framework [13] had to be completely 
reworked, which will be further depicted in following sections.  

5.3.1. Geometry Database 
Although commercial CAD tools are well suited to generate high fidelity geometry for various 



analyses tools, they often require extensive update time. Therefore, a geometry database has been 
created to eliminate the lengthy simulation times required. The database is created by evaluating and 
storing an array of various geometric configurations. Meaning that the shape and number of the robot 
structure are varied leading to a new robot configurations of which the geometric properties are stored 
as illustrated in Figure 3. The geometric properties include mass, center of gravity and inertia.  

In Figure 3 all links subjected to parametric modification are colored white. For link 1 and link 3 the 
shape is altered by modifying the type of actuator. These are modified by altering discrete values 
ranging from 1 to 15 which will automatically insert the actual detailed actuator geometry which is 
stored as an HLCt. The logic stated in the inference engine will then update the internal design 
variables of the links housing the actuator. For link 2 and link 4 the shape of the structure is modified 
by varying the lengths between 200-450 [mm] and 200-400 [mm] respectively. 

The geometry database for each link is computed independently. The separate mass properties of the 
links are then assembled together during the optimization framework to represent the complete robot. 
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Figure 3. A geometry database is created by altering the design variables of the geometric model through a user 
interface. 

5.3.2. Dynamic Database 
Another bottleneck in the optimization framework is the dynamic simulation. A method to shorten 

the simulation time is thereby of importance. Storing the design configurations in a corresponding 
dynamic database as done for the geometric database is however not a promising approach. This is due 
to the kinematic and dynamic couplings between the links, both forward and backward recursively as 
stated in formula (2) and (3). Thereby the total number of design alternatives stored in the database 
would amount to tens of thousands. Consequently, in the following section another proposal is made 
to minimize the number of calls to the dynamic model. 

5.3.3. Distributed Optimization  
To further speed up optimization process, distributed optimization is utilized. The members of the 

robot family are thereby each distributed to a slave PC, as illustrated on a simplified flow chart in 
Figure 4. The family optimization presented in this paper consists of one master PC and four slaves. If 
the number of family members is increased, so will the number of slaves, presenting an effective 
means to keep the optimization time low irrespective of the number of individuals in the product 
family. 

The optimization process starts by the master PC generating an initial population, declared as initial 
Design Variables in Figure 4. The Design Variables are utilized to calculate the commonality 
objective as stated in (4) and also sent to the slaves. The analyses of the robots take place in parallel, 
which upon completion will return the performance objective to the master, see Figure 4.  
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Figure 4. To speed up the evaluation process, the robot family is concurrently computed on 4 slave PCs. 

For each slave PC the motion and static simulation results are stored in a dynamic database. As a 
result when a previously evaluated design is suggested by the optimization algorithm, the results will 
be retrieved from the dynamic database, thereby skipping both the static and motion simulations. If the 
design variables represent a new robot then the mass properties are retrieved from the geometry 
database and sent for static simulation. The static simulation includes a range of robot work space 
positions. The static simulation evaluates if the chosen motors are strong enough to withstand the 
gravitational forces. If the configuration does not meet the gravitational forces, then the performance 
objective is given a penalty value and the dynamic simulation will not be initiated, and hence the 
computational burden reduced. The results are stored in the dynamic database and the performance 
objective generated. 

If the static simulation is successful then the geometrical data from the geometry database model is 
sent for motion simulation. The geometry database is used to parameterize the matrix and vectors in 
equation (1). The equation of motion for the robot is implemented in a dynamic simulation program 
which also includes path and trajectory planner and calculates properties such as torques, 
accelerations, speed and cycle-times. A set of motion cycles are simulated for each robot and the 
results are stored in the dynamic database and a performance objective calculated. 

Although distributed computing presents faster evaluation, it is a complex procedure which needs to 
be properly setup otherwise it will lead to an ineffective and failed framework. The communication 
process involving the master and the slave is illustrated in more detail in Figure 5. The process starts 
by an initial population generated and the master sending the design variables to the slave as shown in 
Figure 4. The Master will then wait for a predefined time to receive a signal from the slave indicating 
that the design variables have been retrieved. If not, the slave PC will be terminated and another slave 
PC will be initiated to compute the performance objective. 

The slave has a defined time at his disposal for each robot evaluation. The computation is 
terminated by the master as soon the time runs out. The reason for this constraint is due to some 
motion simulations taking several minutes to perform, whilst a preferred simulation only should take 
seconds. The lengthy simulation time is due to real time properties of the motion simulator, where 
simulation time is equal to the cycle time of each motion. Consequently, robot individuals consisting 
of barely strong enough motors to pass the static simulation requirement are still too weak to generate 
fast cycle times during the motion simulation. These individuals are weak and thus the simulation is 
terminated when the simulation time surpasses the time limit. A penalty is then given to the individual, 
which is stored in the dynamic database and the performance objective is calculated, see Figure 5.  



Design variables
to slave 1

Slave 1 reading?

Slave 1 done?

Performance

false

false

Wait x [s]?

Choose new slave
PC

Wait y [s]?

Penalize

Yes

Yes

C
om

m
unication process for slave 1

C
om

m
unication process for slave 2

C
om

m
unication process for slave 3

C
om

m
unication process for slave 4

 
Figure 5. Communication process between the master and the slave. 

5.4. Results 
The outlined optimization framework is utilized to search for the Pareto frontier of the presented 

problem. The performance objective is to be minimized with the aim of decreasing the robot weight 
and cycle time, while the commonality objective is to be maximized to increase module sharing 
amongst the robots. In order to search for the global optimum, the following number of individuals 
and generations has been evaluated: 

 Opt. 1 Opt. 2 Opt. 3 Opt. 4 
Individuals 40 60 100 300 
Generations 200 200 200 200 

Table 2. Four sets of individuals evaluated.  

Final results of the Pareto frontiers, up to the 5th Figure 6 rank, are visualized in , where not 
surprisingly, as the number of individuals increase, the Pareto frontiers move to more optimal 
locations. However this movement is progressively minimized, suggesting that about 100 to 300 
individuals is sufficient for finding the optimal Pareto frontier. 
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Figure 6. Pareto frontiers for 40, 60, 100 & 300 individuals. 

 Judging from the 1st Figure 7 order Pareto frontier in , the algorithm is well suited to find solutions 
for both high commonality and best performance. In the robot family with best performance (1), the 
highest reach robot has more powerful actuators, while the smaller robots are capable in performing 
the pre-set trajectories with smaller actuators, hence weighing less. However the commonality level is 



  

low. For the robot family with highest commonality (2), the actuators and arm lengths are selected in 
order to maximize commonality, however the overall performance is worse. The arrows on the right 
side of figure 7 indicate modules that are shared within the product family. 
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Figure 7. Pareto front of the product family, with best performance (1) and highest commonality (2). The shared 
modules are marked with an arrow. 

6. DISCUSSION & CONCLUSION 
In this paper a quantitative approach is presented where robot product family design is formulated as 

a formal multi-objective optimization problem. The product family design is based on tightly 
integrated set of high fidelity physics based models, supporting design reuse and automation. By 
utilizing the automated and reusable models, a MDO framework is established, facilitating automatic 
search for optimal robot families. An optimization case has been set up where the combination of 
discrete component selections invokes changes in the geometric structure, together with constraints in 
the dynamic simulation. The links and power train for a robot family has been optimized, and a Pareto 
frontier generated by applying the multi-objective genetic algorithm NSGA-II. Based on the objective 
functions a Pareto front is generated, presenting a range of robot families where the performance and 
commonality objectives have different importance. Hence, one major advantage of the presented 
method is that the balance between performance and commonality can be determined after generating 
the Pareto frontier. Therefore critical decisions can be made later in the design process, allowing 
engineers to gather more knowledge about the product under evaluation. 

For future work, continuous variables of the actuators, e.g. maximum torque and angular velocity 
can be taken into consideration during the optimization. By taking the continuous variables into 
account the life time estimation of the drive train components can be computed and added to the 
performance objective. However by increasing the number of design variables, the optimization 
framework will have to undergo further modifications to reduce simulation time. To introduce several 
hierarchical layers of optimization, as well as meta-models for high fidelity models will be some of the 
options which should be examined further. 

Another future investigation is the development of cost measurements, by estimating cost by taking 
commonality, component prices and life cycle in consideration. 
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