Draft version

2" WDK Workshop on Product Structuring
Delft, June 3-4, 1996

AN OBJECT-ORIENTED PRODUCT STRUCTURE FOR ASSEMBLY MODELLING

Winfried van Holland and Willem F. Bronsvoort
Faculty of Technical Mathematics and Informatics
Delft University of Technology
Delft, The Netherlands
e-mail: (W.vanHolland/Bronsvoort)@cs.tudelft.nl

ABSTRACT

Assemblies are combinations of single parts with
relations between them, and therefore assembly
modelling and single part modelling are highly
related to each other. This paper describes an
object-oriented product structure that can be used
in single part modelling as well as in assembly
modelling.

In single part modelling, the concept of feature-
based modelling is now widely accepted, whereas
in assembly modelling, the concept is only in its
infancy. An object-oriented modelling concept can
make use of the similarities between both feature
modelling concepts, but can also handle the differ-
ences. This results in a unified way to model both
single parts and assemblies.

The concept of object-oriented modelling is
briefly discussed, and the data structures for single
parts and assemblies are described.

1 Introduction

One of the disadvantages of geometric modelling
is that only geometric information can be stored by
the designer, and most of the other product inform-
ation known by the designer cannot be stored in the
model. Both the geometric information and the
other information are very important during pro-
cess planning. In case of geometric modelling, the
other information must be retrieved, using diffi-
cult procedures, from the stored geometric inform-
ation only. For example, in milling, where different

shapes are milled with specific milling operations,
it is hard to automatically retrieve these shapes
from the geometry only.

These problems can be solved by not using
only geometric models, but by using feature mod-
els instead. Features represent both geometry and
functional information for a specific application.
All relevant information can be stored within a fea-
ture model, and canbe used by several analysis and
planning tools. An additional benefit of using fea-
ture models, instead of geometric models, is that
features are on a higher abstraction level than geo-
metric entities, and this level is closer to the way
of thinking of designers and engineers (Bronsvoort
and Jansen 1993).

Every discipline can make use of an own set of
features to represent the product model, e.g. the
designer uses design features and someone from
manufacturing uses manufacturing features. They
all have their own specific view on the product mod-
el. How thesedifferent views on one product mod-
el can be implemented is described by (Bronsvoort
et al. 1996, de Kraker et al. 1996).

Another discipline is assembly, where single
parts are combined into products. Also in this dis-
cipline the concept of features can profitably be
used (van Holland and Bronsvoort 19952, van Hol-
land and Bronsvoort 1995k, van Holland and
Bronsvoort 1996). Although design and manu-
facturing features can be used to retrieve some
information needed in assembly planning, these
features only give information on single parts. We,
therefore, extend the feature concept, and store

assembly-specific information in so-called assembly

features. We distinguish two types: handling and
connection features, storing information specific for
handling a component, respectively on connections
between components.

A way tomodel! features in a computerised envir-
onment, is to make use of object-oriented model-
ling. In object orientation, both data and opera-
tions on these data can be represented by so-called
classes, and instances of these classes, the objects.
The feature types can be represented with classes,
and the feature instances can be represented with
objects of these classes. In this way, the object-
oriented concept can very effectively be used in
feature modelling.

Section 2 will first briefly describe the concepts
of object-oriented modelling. Section 3 showshow
these concepts can be used in feature modelling for
single parts. Section 4 discusses the object-oriented
data structures used in assembly modelling. Com-
binations of the data structures for modelling single
parts and modelling assemblies are presented in
section 5. The paper will end with section 6 giving
some conclusions.

2 Oblect-oriented modelling

This section will give a brief description on some
issues in object-oriented modelling. For a detailed
description on object-orientation see (Stroustrup
1993) and (Gorlen et al. 1991).

In object-oriented modelling, abstract data types
are used. An abstract data type is a user-defined
data type that encompasses data elements along
with the operations that can be performed on them.
Most programming environments do not support
these abstract data types, but separate the data ele-
ments and the operations that can be performed on
them. An advantage of combining data elements
and operations is that it is easier to change avail-
able data structures and to add to new structures.
An additional benefit is that object-oriented models
are closer to the way of thinking of a programmer.

Much of the value of object-oriented modelling
results from inheritance. Start with an already
developed set of object types, or classes, and extend
them for new applications by adding data elements
and operations to form new classes. Do not write
new classes from scratch, but inherit data and oper-
ations from useful base classes. Add new function-
ality by describing how the new or derived class dif-
fers from the base classes. Figure 1 shows such a
class hierarchy for 2D objects in a 2D drawing envir-

onment. The base class, the 2D shape class, con-
tains, for example, functions to draw or move a 2D
shape on a screen. The derived classes inherit these
functions, so they can alsobe drawn or moved ona
screen, and they add some other specific operations
or data types. For example, the difference between
the rectangle class and the derived square class is
the modification operation, where the latter class
restricts the modification by defining that width
and height must always remain the same.

2D

circle polyline string

rectar

square

Figure 1: Class hierarchy for 2D objects

It is allowed for a class to derive data elements
and operations from more than one base class; this
mechanism is called multiple inheritance. Figure 2
shows an example of multiple inheritance. When a
combined data structure for a string and a rectangle
around it is needed, and data structures for a string
and a rectangle have been defined, then the new
class, the bordered string class, can be created by
inheriting the data elements and operations from
both rectangle class and string class.

hello world

v v

rcct% /t'ng

bordered
string

Figure 2: Muitiple inheritance

How object-oriented models can be used in

developing data structures used in feature mod-
elling, is shown in the following sections.

3 Feature modelling for single parts

Feature modelling is now commonly used in mod-
elling single parts. A feature is defined here as
physical part of an object mappable to a generic
shape and having functional significance. Features
with significance for the designer are called design
features or form features. Strictly speaking, there
is a difference between form features and design
features; a form feature contains only additional
information on the shape of the feature, whereas
a design feature can also contain design specific
information.

A single part is represented by several instances
of form features. Each type of feature instance is
represented by a generic feature class. So, if a
single part has multiple holes in it, then each hole
is represented by an instance of the feature hole
class. Every feature inherits from the base feature
class. This class contains a data structure in which
the geometry and topology of the feature and meth-
ods on these data structures can be described. Each
derived feature class, e.g. the through hole feature
class, describes the shape type of the feature, its
geometry and topology. Each instance of these
classes, describes the exact shape, with specified
attributes. Detailed descriptions of form feature
classes can be found in (Ovtcharova et al. 1992),
and an example is given in figure 3.

/‘m\
?Aﬁ(compound
;

form-feature
block b
s '] "

dave-tail
rb

through blind
hole hole

Figure 3: Class hierarchy for form features

A special class is the compound form-feature
class, where new form features can be created by
taking combinations of other form features.

To define the exact position and orientation of
the instances, relations, or constraints, are placed
between these features. Therefore a base relation

class is defined, and derived classes are defined to
describe special constraints, e.g. the mating plane-
plane class and offset plane-plane class. Details
on constraints can be found in (Dohmen et al. 1996),
and a brief example is given in figure 4. New con-
straints can be defined in the compound constraint
class by taking combinations of other constraints.

v
geometric algebraic compound
constraint
¢

plang:plane line-plane

5 kY [N

mate co-planar offset

Figure 4: Class hierarchy for constraints

To define a complete single part, both instances
of features and instances of constraints must be spe-
cified. A constraint solver is used to satisfy these
constraints, and to calculate the resulting position
and orientation of the feature instances. To com-
bine features and constraints, a feature model class
is defined. This class defines methods for adding
instances of features and instances of constraints,
and defines operations for calculating the actual
geometry of the defined single part. In figure 5, a
single part is shown with instances of features and
instances of constraints.

4 Featura modeliing for assembled products

An assembled product consists of combinations
of, possibly similar, single parts. These parts
are not always directly assembled into the com-
plete product, but mostly, and for several different
reasons, sub-assemblies are created as stable entit-
ies. These sub-assemblies can further be used
to assemble other sub-assemblies or the complete
product. Both a single part and a sub-assembly are
stable entities (with respect to transport), and can
therefore be assembled onto other entities; these
stable entities are called components. The aiready
assembled components are called a partial assembly.
A partial assembly can thus be a single part (when
assembly has just been started), an instable group
of components (during assembly), a sub-assembly
or the complete product.

Between components there exist all kinds of rela-
tions, representing a certain function between the

consuraints

E——

Figure 5: Form feature model of a single part

components, and prescribing the position and ori-
entation between the components. Because these
relations are highly dependent on the shapes of
the involved components, they are called connec-
tion features. A connection feature is an example of
an assembly feature. An assembly feature is defined
as a feature with significance for assembly pro-
cesses. A connection feature contains assembly-
specific information on a connection between com-
ponents. Another assembly feature is the handling
feature, containing information on how to handle
a component. See for details on assembly features
{van Holland and Bronsvoort 1995b).

W

connectigp feature handling fcature

[

Ry
plain-mate pen-hole rib-slon snap-fit compound
connection cunngetion cenpeelion conneetion conneeton
r T feature
Foos
thteaded dove-lail
pen-hote rib-slet

connection vonnection

Figure 6: Class hierarchy for assembly features

A class hierarchy for the assembly features is
given in figure 6. In this class hierarchy, also a
compound connection feature class is defined, to
create new connection features by combining other
connection features. .

In a partial assembly, the same type of compon-
ent can be available on several places in the partial
assembly, e.g. several bolts to fasten a plate. For
each different type of component, we introduce a
generic component, describing the geometry and
topology by its design features. The generic com-
ponent does not describe a position and orientation
in the product; these are described by an instance
of a generic component. In this way a product
can have several instances of a generic compon-
ent, but for every type of component it will have
only one generic description. Each instance can
have different connections in the product, repres-
ented with connection features. An object of an
instance component has an attribute element in its
data structure pointing to the represented gener-
ic component. Figure 7 shows the class hierarchy
used to describe the different components.

form feature

comppnent
maogel /\

RN generic instance

~

“\ component component
~
‘\
~

single generic
part combined

s "
product sub-assembly

Figure 7: Class hierarchy for different components

There are two derived classes from the gener-
ic component class: the single part class and the
generic combined class. The difference is that the
single part class is also derived from the feature
model class (the dashed line in figure 7), i.e. it rep-
resents the feature model of a single part; these
components cannot be subdivided into smaller
components. The generic combined class repres-
ents the components that consists of combinations
of instances of components and connection features
between them. Both product and sub-assembly are
components that can be subdivided. It is hard to
give a difference between these types. A product
described by one person, e.g. a complete engine,

can be seen as a.sub-assembly by another, e.g. the
engine for a complete car. That is the reason why
no different classes are introduced for product and
sub-assembly (the dotted lines in figure 7); both are
represented by the generic combined class.

During modelling of a product or sub-assembly,
components are assembled onto a partial assembly.
This partial assembly is also a combination of
instances of components and connection features.
A partial assembly differs from a product or sub-
assembly, in the sense that it is not known whether
the combination of components is a stable entity.
We did not introduce a new partial assembly class,
because the partial assernbly can also be represen-
ted by the generic combined class. An attribute
in the data structure of the generic combined class
contains whether it represents a stable entity, i.e.
sub-assembly or product, or it is not known wheth-
er the entity is stable, i.e. a partial assembly.

In figure 8 an example is given of a generic com-
bined component, consisting of three instances of
two different generic components, and two con-
nection features.

1st instance
component

rib-slot
connection feature 1

generic smali-block

combined
component

Ist instance

e el component
Znd 1nstance base-block
component
rib-slot
small-block

connection feature 2

Figure 8: Assembly model of a sub-assembly

5 Combining single part modelling and assembly
modelling data structures

Both in single part modelling and in assembly mod-
elling, data structures are used to represent shapes,
relations between the shapes, and structures for
combining these shapes and relations. In single
part modelling, these are represented by, respect-
ively, form features, constraints and the feature
model. In assembly modelling, these are repres-
ented by, respectively, instances of components,

connection features and generic combined com-
ponents. Because of the similarities, new classes
are defined to create a uniform environment for
modelling single parts and assemblies. The new
classes are: combined class, related class and the
relation class; they are shown in figure 9.
The relation class is introduced as a base class for
all objects that represent a relation between entities,
i.e. the constraints and connection features. The
related class is introduced as a base class for all
objects involved in relations, i.e. the form features
and the instances of components. The combined
class is introduced as a base class for classes in
which sets of related objects and relations between
them are specified, i.e. feature models and gener-
ic combined components. Using these three base
classes, a uniform way in modelling single parts
and assemblies is created. This uniform modelling
concept can be used to combine both modelling
environments into one environment, where both
single parts and assemblies can be modelled.

& Conclusions

In this paper a uniform object-oriented data struc-
ture is presented for modelling single partts and
assemblies.

The object-oriented models are easier to extend
by using the inheritance mechanism. New classes
derive already made data elements and operations
on these elements from available base classes, Only
the differences between base class and derived
class must be specified.

The form feature class hierarchy and constraints
class hierarchy are presented to be used in generat-
ing feature models representing single parts. Both
the feature classes and constraint classes can be
extended by using the compound class definitions.

The component class hierarchy and assembly
feature class hierarchy are presented to be used in
generating assembly models representing products
or sub-assemblies. Assembly features are divided
into handling and connection features, for rep-
resenting information on handling a compon-
ent respectively about connections between com-
ponents. Here a compound connection feature
is defined for extending the connection feature
classes.

The combined, related and relation classes com-
bine the similarities between the modelling envir-
orunents for single parts and assemblies, to create
one modelling environment for both single parts
and assemblies.

generic
component
’

’
?

comp,onent

1
]
1
]
[}
1
1
I
1
1
1
1
1

Figure 9: Combined data structure for modelling single parts and assemblies

The presented object-oriented models have been
implemented, and are already used in several
assembly process planning modules. These mod-
ules have shown the profitability of using the fea-
ture concept in assembly.

REFERENCES

Bronsvoort, W. F , Bidarra, R., Dohmen, M., van
Holland, W. and de Kraker, K. J. (1996), Fea-
ture modelling for concurrent engineering, in
‘Proceedings of the Symposium on Tools and
Methods for Concurrent Engineering’, Tech-
nical University of Budapest, pp. 46-55.

Bronsvoort, W. F. and Jansen, E W. (1993}, ‘Fea-
ture modelling and conversion - Key con-
cepts to concurrent engineering’, Computers
in Industry 21(1), 61-86.

Dohmen, M., de Kraker, K.]. and Bronsvoort, W. E

(1996), Feature validation in a multiple-view

- modeling system, in ‘Proceedings of the 16th

ASME International Computers in Engineer-

ing Conference’, Irvine, California. To be pub-
lished.

Gorlen, K. E. , Orlow, 5. M. and Plexico, P. S.
(1991), Data Abstraction and Object-Oriented
Programming in C++, John Wiley & Sons Ltd,
Chichester, England. ISBN 0-471-92346-X.

van Helland, W. and Bronsvoort, W. E (1995a),
Assembly features and visibility maps, in
A. A. Busnaina, ed., ‘Proceedings of the 15th
ASME International Computers in Engineer-
ing Conference’, Boston, pp. 691-697.

van Holland, W. and Bronsvoort, W. F. (19950),
Assembly features inmodelling and planning,
in M. Tichem, T. Storn, M. M. Andreasen
and K. J. MacCallum, eds, ‘Proceedings of
the WDK Workshop on Product Structuring’,
Delft University of Technology, Delft, pp. 195-
206.

van Holland, W. and Bronsvoort, W. E (1996),
Extracting grip areas from feature informa-
tion, in ‘Proceedings of the 16th ASME Inter-
national Computers in Engineering Confer-
ence’, Irvine, California. To be published.

de Kraker, K. . , Dohmen, M. and Bronsvoort,
W. E (1996}, Multiple-way feature conversion
- opening a view, in ‘IFIP WG5.2 Workshop on
Geometric Modeling’, Airlie, Virginia.

Ovtcharova, J., Pahl, G, and Rix, J. (1992), ‘A pro-
posal for feature classifiction in feature-based
design’, Computer and Graphics 16(2), 187-195.

Stroustrup, B. (1993), The C++ Programming Lan-
guage, 2nd edn, Addison-Wesley Publishing
Company, Reading, MA. ISBN 0-201-53992-6.

S/t

Alqwiesse oy aunjands jonpould pajuslio-josigo ue Hleanlk

SUOISN|OUOD

Buijjepow
Alquasse pue Lred a|buis JO uojeuiquiod e

sel|quasse 1o} Buljjepoul ainjesy e
sued o|Buis o) butjilspow ainjes) e

Buljlepow pajusiio-jaalqo e

MBIAIBAO

966} ‘v-€ aunr ‘yied

Buninyonas 1enpold
uo

doys3I0pA MAM pud

SO[jewIoju] pue SollewsaUe|y [edluyos)] Jo Aynoed
ABojouyoa) jo Alsisaiun yied

Wlednld
£

JJ00ASUOIE ' WI|IIM
PUB||OH UBA PSLJUIA

BuljjepoN Alquiassy 10}
2In1onAs 1onpoid
pajusl-108lq0 uy

object-oriented modelling
do not write new classes from scratch, but

combine both data elements and operations on inherit data and operations from useful base
these elements in one structure classes, add only differences in functionality
between base class and derived class

menu canvas
_ circle polyline string
H . rectangle triangle
@D O
hello world squarc

class hierarchy

2D drawing tool

TU Delft an object-oriented product structure for assembly 2/15 TUDelft an object-oriented product structure for assembly 3/15

GHS

Ajquwssse 10} sinangs 1onposd pajusio-jealgo ue

jopow j1onpoud ey} Bunuasaidal
8iNJONJIS B)EP SUO Ul WaY} Usamlaq Sjuiesuod
pue seinjes; sSaUIqUIOD [BPOW BINJEd) B

\ed sjbuis

SIOJWEYd

saJnjea} WJoy

a[oy y3nomny}

sourolIubIS jeuoOUN
Buiney pue sdeys ousueb e 0} sjqeddew
“108lqo ue jo pied jeojsAyd e si ainjes) e

¥o01q

Hiednli

SkHy

Alquiesse Joy aimponys npold pajusiio-joslgo ue t_mﬂ 3 1
B

SSB|9 9SB(9UO Uay) aioul
woJj suonesodo pue SjUSWS[e BIEP BALRP

Fuins
pRIapIc

fuflns V;uﬁ

]]

Priom oY

asuelIayul ajdinw

SR ol Al WAl el e sl UMY LY T g L

a[oy ajoy
purq ySnoxyp
qu 10[8
[1e1-2A0p [le1-2A0p
Y Fd o
days 10[8

SInjea-ULI0]

punodwod
armyedf uoj
AI.IO.IB.IGQI.I SSe|0 ainjes)
SL/L AlQuigsse 10} aInondls 1aNpold pejuelic-10e|do ue
spyo rmeued-00 9w
L
eue[ﬁ—aug[
v A
JUIRIISUOD %
punoduios oreIqadie onauioad

JUTBISUOD

Ayoiesaly ssejo JuIRySUOD

HeUnil
L

CHednNL
"

SL/6

Alquiesse 10} 81njonys 1onpoid pajuaLo-1algo ue Bleanl

sjusuodwod usamiaq suoijejos e
1onpoid -
Alquesse [ejed —
Alquasse-gns -

ped -

sjusuodwlod e

Buijjopow Ajquiasse

§i/8

Alquiasse 103 ainpnis 1onposd pajuauo-Pelqo ue u_.“_._wﬁ_ : .—.

2|04-punes

105 (IEy§Acp

=

S[OY-pUNOL

Med sjbuis e 10} [9poW 8INjes)

—— -
= \
| ~
ey = SN -
= s @“
=/ lek=7~
=
"HL
—— wed 3Fms

SIU[RISUOD

a|dwexs jied ajbuis

connection features

contains specific assembly information on
connections between components

¢ insertion and final position, insertion path
e internal freedom of motion
e contact areas

e tolerances

threaded
shaft

rib

threaded
blind hole

TUDelft

an object-oriented product structure for assembly 1015

Alquissse Joj edniondls JIonpoud pajuslo-joelqoe ue

Sk

Weant

Joupoxd

A[quiasse-qns

poUTqUIOD
OLIDUQS

JUUOULI0D

juauodwod

ousuag

Qour)SUL

[epour
9INJE9J ULIO]

JIAUOAUIOY

Ayasesaly sse|o Jusuodwiod

SHEL

Aguwsasse 10; ainmanys jonpold pajusiio-108lgo ue Hieanld
w
>_DE®mmm-DJm B 10} |ppoul Alquiasse
7 2INB2J UONIBUUOD SOTq-[EWS
10}s-qut FPO19-H
jusuoduroo
joo[g-eseq aoue)Isul pug
zunodwod #)
2DURSUI IS
-
wauodmos
peUIquIoD
onauad
T 21njeaJ UCTIOIUUOD Ty, S !
Jo[s-qu F201q-Trewt
g Jouoduios

Qour)sUT 15|

ajdwexa Ajquiosse

assembly feature class hierarchy

assembly feature

handling feature

feature

connecti

rib-slot snap-fit compound
connection connTction connIction connection

pen-hole

plain-mate

connection
feature

dove-tail

threaded
pen-hole
connection

rib-slot
connection

mrm mlalnst Anlanbad aesdioiat Areiintoes Fae qeenenble Tl

TNl

-
ol

combine data structures

combine data structures for single part and

assembly modelling conclusions

e uniform data structure e easier to extend object-oriented model

e integrate single part and subassembly using inheritance

modelling e both feature models for single parts and
assemblies are closer to way of thinking of
the designer/engineer

component e combine both structures to a uniform
object-oriented data structure for modelling
single parts and assemblies

generic
component
¢

¢ already used in several assembly process
planning modules

TU _Um:._“ an object-oriented product structure for assembly 1415 TUDelft an object-oriented product structure for assembly 15/15

