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Abstract: Design optimization combines mathematical optimization algorithms with engineering 
analysis models to generate designs with improved performance. In product development this ap-
proach is useful for products with a large number of interdependent design decisions or for new 
products where significant experience has not yet been accumulated. Current efforts are directed 
primarily towards complex and new technology products, and the augmentation of engineering 
analysis models with business or “enterprise” performance models, so that optimization results 
become more meaningful to management. The article  reviews these issues  adopting an industry 
application  viewpoint. 

INTRODUCTION 

The term “optimization” is widely used in a rather 
loose way to indicate doing something better than 
the way we are doing it currently. In product devel-
opment the term is often used in a similar manner to 
indicate making product decisions that yield a better 
product. In mathematics optimization in a formal 
term that describes the process of locating the opti-
mum (minimum or maximum) of a function, possi-
bly subject to several constraints. An optimization 
problem can be written in a canonical form (here in 
the so-called negative null form) as follows 
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where f is the objective function to be minimized, 
h and g are vectors representing the functions in the 
equality and inequality constraints, respectively, and 
x is the vector of variables that we have to find val-

ues for in order to solve the problem of Eq. (1). In 
product design the objective is a criterion of product 
performance that should be optimized, the con-
straints are design requirements that must be satis-
fied, and the variables are the design quantities that 
we have the ability to assign values to, as we seek 
the best design [1]. 
The ability to represent product decisions in the 
context of a mathematical model, such as Eq. (1), is 
clearly limited by our ability to model the entire 
design situation in the required functional form. It is 
unlikely to be able to derive proper mathematical 
models for every design decision or requirement, 
and so the results from such an optimization will be 
optimal only wi th respect to the model used. In this 
sense the limits to optimization practice are imposed 
by the limitation of our modeling abilities. This is a 
general theme throughout this article. 
The other issue of immediate concern is the actual 
solution of the mathematical problem stated in Eq. 
(1). Such a solution is far from easy when the func-
tions have “bad” mathematical properties, such as 
nonlinearity, nonconvexity, discontinuities and non-
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differentiabilities. Handling these situations can 
become quite esoteric; some simple ideas that can be 
helpful in many situations will be discussed. 
Design optimization becomes more attractive when 
the number of decisions to be made becomes too 
large for relying on intuition and past experience. 
We often refer to those problems as large-scale or 
complex problems. The usual approach we take is to 
partition the original problem into a collection of 
smaller subproblems, whose solution will yield the 
solution of the original. Such decomposition strate-
gies become increasingly necessary in practical 
product design. Their successful implementation 
requires careful construction of the partitioned prob-
lem and of the coordination strategy required to 
solve all the subproblems in an efficient and com-
patible manner. Here we will discuss such a strategy, 
called analytical target cascading, tailored specifi-
cally to product development. 
The value of the optimization concept becomes often 
more apparent when facing new product decisions. 
A common product development strategy is to de-
sign a set of product variants tailored to different 
market segments derived from the same concept and 
sharing common elements, collectively called a 
platform. Commonality acts as a constraint on what 
could be individually optimized variants, so a trade-
off exists between maximizing sharing to reduce 
costs and time, and minimizing the effect of not 
achieving the ideal variant optima due to the addi-
tional constraints. We will look at how design of 
product families can be stated as a formal optimiza-
tion problem and the insights that can be gained 
from its solution. 
Design of engineered products can only be done in 
the context of the producing enterprise and the mar-
ket in which the product must exist. Traditional 
design optimization has been limited to design deci-
sions about engineering performance. Product suc-
cess for both producer and user clearly depends on 
other requirements, including production require-
ments, marketing, and investment strategies, collec-
tively referred to as enterprise-wide design. In an 
effort to bring design optimization into a more cen-
tral position within the enterprise, and thus increase 
its value and impact, there is increased effort in 
augmenting the engineering physics models of per-
formance with models from production, economics, 
investment science and marketing. We will present 
ideas of how this augmentation can be accomplished 
through a product portfolio design problem. 
The following sections will provide a limited review 
of the issues raised above, namely, modeling design 
responses, some characteristics of the requisite op-
timization algorithm toolbox, analytical target cas-
cading, optimal product family design, and enter-
prise-wide optimal product design. More details can 
be found in cited references. 

1. MODELING DESIGN RESPONSES 

Optimization as a formal method in the design of 
products first gained attention during the 1970’s star t-
ing primarily in the aerospace and chemical indus-
tries, followed soon after by the automotive industry. 
The development and increasingly extensive use of 
computer-based analysis methods, generally referred 
to as computer-aided engineering (CAE) tools, has 
changed the way product development is practiced 
today. The use of optimization follows closely the 
availability of CAE tools in the practicing engineering 
community. For example, the popularity and in-
creased robustness of finite element structural analy-
sis has made structural optimization widely used.  
Design optimization use is also more likely to be 
found in high technology areas, where performance is 
pushed to extremes and traditional knowledge is ei-
ther lacking or not codified. For example, structural 
optimization is extensively used in the aerospace and 
automotive industries, but is quite limited in the areas 
of civil and mechanical engineering practice where 
designs are tightly governed by conservative codes 
and standards developed over centuries of experience. 
The way the response of a given design is computed 
determines the mathematical and practical nature of 
the optimization problem. Modern applications will 
typically include CAE-based analysis tools to com-
pute responses. These tools, often referred to as 
“simulations”, typically involve numerical solution 
of differential or integral equations, assuming the 
design as given and computing its responses, 
namely, the functions f, h and g in Eq. (1).  
Simulation-based optimization addresses design prob-
lems where the objective and/or constraint functions 
are not expressed with closed-form analytical equa-
tions, but with “black box” computer simulations.  
Typically such functions will be noisy or discontinu-
ous (i.e., non-smooth) and may require long comput-
ing time for each function evaluation.  For example, 
Figure 1 shows the fuel economy of an automobile as 
a function of the final drive ratio. The response is 
noisy, i.e., there are small perturbations about an 
underlying trend, and has several discontinuous 
jumps, i.e., large changes in the response for small 
changes in the design variable.  Numerical optimiza-
tion with such functions poses several challenges. 
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Figure 1 :  Example of  simulation-based design  
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The usual optimization techniques (e.g., Newton's 
method) employ gradient information from finite 
differencing to guide a sequential strategy towards 
the maximum.  The noisy nature of the simulation 
renders finite differencing ineffective at estimating 
gradients and prevents the algorithm from success-
fully progressing towards the optimum.  Small finite 
differencing steps will lead the algorithm to a local 
noise optimum, and large steps wi ll not capture the 
underlying slope trend accurately.  
This difficulty can be dealt with in several ways. A 
non-gradient optimization algorithm may be used, 
such as genetic algorithms, but if the function com-
putation cost is too high this approach will not work, 
since a very large number of function evaluations is 
needed to achieve reasonable certainty about locat-
ing the optimum. Another approach is to adjust 
empirically both the analysis integration step (which 
is usually the culprit in noise generation but also 
determines the analysis solution accuracy) and the 
differentiation step of the gradient approximation 
until an acceptable compromise between gradient 
approximation accuracy and simulation cost is 
achieved.  
Yet another approach is the use of approximations.  
An approximate model can provide a smooth func-
tional relationship of acceptable fidelity to the true 
function with the added benefit of small computa-
tional cost.  The approximate model can be used in 
conjunction with a gradient-based algorithm or in 
entirely different ways.  How to build and exploit 
approximations effectively in simulation-based op-
timization is a thriving research area. 
Of particular current interest is the kriging approxi-
mation. Kriging is a data interpolation scheme with 
roots in geostatistics, adapted for data coming from 
deterministic computer simulations.  This form of 
data collection and approximation is known as De-
sign and Analysis of Computer Experiments 
(DACE). Kriging models can be used directly with 
other standard algorithms, or become the basis for a 
type of non-gradient global optimization algorithm, 
as we will discuss in the next section. 

2. THE OPTIMIZATION TOOLKIT 

An often-asked question is “Which is the best opti-
mization algorithm?” The answer comes from the 
maxim that “The best algorithm is the one you know 
best!” The truth of this answer derives from the facts 
that there is really no algorithm that can solve all 
problems reliably and efficiently, and that any good 
algorithm will always need some adjustment or 
“tuning” to achieve solution robustness for any 
given problem. Experience with a given algorithm 
and with the specific code implementation is a sine 
qua non for success.  
Having said that, we can still provide some basic 
guidelines for a good optimization toolbox. The 

workhorse of the toolbox should be a standard se-
quential quadratic programming (SQP) code with 
line search options for both exact and inexact line 
search. When function cost is high and gradients 
relatively inaccurate, the line search can become 
very expensive so inexact searches (using only a 
“sufficient descent” criterion) are better. For the 
same reason, it is also good to have an SQP variant 
that handles quadratic subproblem infeasibility with 
a trust region instead of line search.  The SQP algo-
rithm has also the advantage that requires really no 
tuning. However, its successful use does depend 
strongly on the scaling of the problem functions, so 
one should not use SQP without some scaling ex-
perimentation. There are many and good code im-
plementations of SQP to choose from. 
If one wishes some more options for gradient-based 
algorithms, good choices would be the generalized 
reduced gradient (GRG) and Augmented Lagrangian 
(AL) algorithms. In GRG we get feasibility assur-
ance at the end of every iteration, at a cost of extra 
computational effort. Handling inequalities relies on 
an active set strategy that tends to be heuristic. The 
actual code is conceptually simple but lengthy to 
implement. Tuning program parameters is often 
necessary to get reliable performance for large prob-
lems. There are some good code implementations 
and GRG has generally been popular among engi-
neers. AL algorithms have probably not been as 
extensively used and developed as they may de-
serve. They can be robust and work well in problems 
with large numbers of equality constraints. 
A second important tool in the box should be a non-
gradient-based global search algorithm employing 
some heuristic search strategy, which will not get 
hang up on noise, local minima and discreteness. A 
genetic algorithm (GA) or a Lipschitzian algorithm 
[2] is a good choice. The simple structure of GAs is 
very attractive to the non-mathematically minded 
but computational cost is high and tuning can be 
excessive. Nevertheless, if one can afford it, when 
faced with a likely troublesome problem running a 
GA “just to see what you get” is a good idea. 
Another choice for a global search tool is an algo-
rithm that looks for the optimum by creating increas-
ingly better global approximations of the original 
problem functions, in the vicinity of likely optima. 
Such algorithms utilize statistical models of the 
functions to define an infill sampling criterion (ISC).  
The criterion determines which design points to 
sample next (the so-called infill samples).  The infill 
samples are then evaluated on the true functions and 
the models updated.  This is a completely different 
method than algorithms following a search path 
because the sampling criterion could place the next 
iterate anywhere in the design space. Eventually, 
with enough sampling, the approximate model is 
close enough to the true model so that their corre-
sponding optima will closely match. 
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Figure 2:  Flowchart of the EGO algorithm 

These algorithms have become increasingly attrac-
tive for simulation-based optimization and deserve 
some more discussion here. They are known as 
Bayesian analysis algorithms [3] because they use 
statistical models to predict future outcomes. 
One particular Bayesian analysis optimization algo-
rithm is known as Efficient Global Optimization 
(EGO) [4, 5, 6], and employs kriging models as the 
approximation method. The basic steps in EGO 
follow (see also Figure 2). 
1. Use a space-filling design of experiments to 

obtain an initial sample of the true functions. 
2. Fit a kriging model to each function. 
3. Numerically maximize a sampling criterion 

known as the expected improvement function to 
determine where to sample next. 

4. Sample the point(s) of interest on the true func-
tions and update the kriging models. 

5. Stop if the expected improvement function has 
become sufficiently small, otherwise return to 2 

Figure 3:  Demonstration of the search strategy of 
the EGO algorithm. 

Looking at a one-dimensional multimodal example 
in Figure 3 gives an idea of how this works.  The w-
shaped dashed line is the true objective function we 
wish to minimize, while the solid line is the kriging 
approximation conditional to the sample points 
shown as circles.  The plot at the bottom is the sam-
pling criterion, normalized to facilitate comparisons 
between iterations. The infill sampling criterion is 
indeed the expected improvement function and it 
determines where EGO will evaluate the functions.  
It tends to choose the design points most likely to 
improve the accuracy of the model and/or have a 
better function value than the current best point.  
After the initial sample of four points, the resulting 
kriging model is a poor fit to the true function.  
However, the expected improvement function leads 
the algorithm to sample points where the uncertainty 
in the model is highest.  After two iterations, the 
model has improved in the region of the local opti-
mum on the right, and the expected improvement 
function leads EGO to sample another few points in 
that region where there is a high probability that a 
better point can be found.  By the  fourth iteration, 
the region on the right has been explored, but the 
uncertainty in the model on the left portion of the 
model drives EGO to sample points in that region.  
After six iterations, both local optima have been 
discovered and the true solution has been found 
quite accurately. 
Because the process of fitting the kriging models 
and locating the maximum of the infill sampling 
criterion are optimization problems themselves, the 
overhead associated with EGO can be significant.  
Other methods such as genetic algorithms or gradi-
ent-based algorithms on the other hand require very 
little computational effort in determining where to 
evaluate the functions next.  However, they require a 
large number of function evaluations to converge on 
a good solution.  The benefit of the overhead of 
Bayesian analysis algorithms is that each iteration 
uses as much information as possible in determining 
where to evaluate the functions next, enabling them 
to locate good solutions with fewer iterations.  This 
makes the Bayesian analysis algorithms best suited 
to situations where the functions are really expen-
sive.  
Finally, the toolbox should have some ability to 
handle discrete variables. A GA would be quite 
suitable if the model is purely discrete. Many practi-
cal problems are mixed-discrete with unknown 
(typically nonlinear) mathematical form for the 
functions. These are truly difficulty problems that 
can be handled on a case-by-case basis through 
some type of branch-and-bound or random search 
strategy, taking any advantage possible from what 
you know about the physics of the problem and from 
any possible modeling simplifications. There are no 
real “standard” toolkit methods for these problems 
yet. 
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3. TARGET CASCADING 

Target cascading is a key challenge in early product 
development: How to propagate desirable product 
characteristics, defined by product’s specifications, 
to the various subsystems and components in a con-
sistent and efficient manner.  Consistency means 
that all parts of the designed system should end up 
working well together, while efficiency means that 
the process itself should avoid iterations at later 
stages, which are costly in time and resources. 
Analytical target cascading (ATC) is formalized in a 
process modeled as a multilevel optimal design 
problem [7-10].  Design targets are cascaded down 
to lower levels by partitioning the overall design 
problem into a hierarchical set of subproblems.  For 
each design subproblem at a given level, a rigorous 
optimization problem is formulated to minimize 
deviations from the propagated targets and thus 
achieve intersystem compatibility.  A coordination 
strategy links all subproblem decisions so that over-
all product performance targets are met. 
ATC requires a hierarchical decomposition of the 
product and the underlying models into systems, 
subsystems and components, collectively referred to 
as elements. An element’s design response R is a 
function of the element’s own design variables x as 
well as of the responses of (sub)elements making up 
the element. For each level and for each element in 
the model hierarchy, a design optimization problem 
is formulated to match responses dictated by ele-
ments above in the hierarchy and to satisfy the ele-
ment’s design constraints. ATC is general enough to 
account for multiple levels and for interactions be-
tween elements at the same level by means of link-
ing design variables.  
Now we describe how ATC is applied to the design 
of an advanced heavy tactical truck [11].  Novel 
technologies (e.g., series hybrid and electric propul-
sion systems, in-hub motors, and variable height 
suspensions) are introduced with the intention of 
improving both civilian and military design attrib-
utes within the framework of a dual-use philosophy.  
Emphasis is given to fuel economy, ride, and mobil-
ity characteristics.  A two-level target cascading 
hierarchy is defined, and five design subproblems 
are formulated.  At the top level, design targets for 
the truck are matched; at the bottom level, suspen-
sion characteristics, cascaded down from the top 
level, are matched using a detailed model of the 
suspension system. A schematic of the vehicle con-
figuration is shown in Figure 4. Left and right tires 
are combined into one tire because of symmetry.  
The vehicle is powered by a diesel engine that is 
connected to the generator through a speed reduction 
gearbox.  The electrical power of the generator, 
through the power bus, is fed to eight in-hub motors 
that drive the wheels through a gearbox at each 
wheel.  Additional power may be taken from the 

battery modules connected to the power bus.  Distri-
bution of power and charging and discharging of the 
batteries are managed by the power control module 
based on instantaneous power requirements. 

 

Figure 4: Vehicle model configuration [11]  

Models were developed to simulate the transient 
response of both a series hybrid and an electric-
driven truck at the top (vehicle) level, and the re-
sponse of variable height suspensions at the bottom 
(system) level.  The models at both the vehicle and 
system levels were tailored to fit the target cascading 
process.  Automated modeling techniques were used 
to develop vehicle dynamics models that are compu-
tationally efficient, accurate, and described by 
physical parameters.  Baseline designs were chosen 
to be consistent with vehicle concepts of the U.S. 
Army, whereas vehicle targets were defined to im-
prove on the performance of existing designs.   
At the vehicle level, responses Rv must match de-
sired design specifications Tv . These responses are 
assumed to be functions of vehicle design variables 
xv and system responses Rsi

 , for i = 1,…,ns systems, 
i.e., Rv = rv(xv, Rs1

,…, Rsns
). To determine target 

values for system responses Rsi
 and vehicle design 

variables xv a minimum deviation optimization prob-
lem is formulated as follows: 

1

1

Min

with respect to

, , , ,

subject to

( , ) 0

( , ) 0

ns

s

i i

R
v v v

R
v s s v

n
L R

s s v
i

v v v

v v v

?

?

?
?

? ?

? ?

?

?

?

R T

x R R

R R

g R x

h R x

?

                  (2) 

where xv
 is the vector of design variables exclusively 

associated with the vehicle, Rv
 is the vector of vehi-

cle responses, Rsi
  is the vector of responses for the i-

th system making up the vehicle, ?v
R

 is a tolerance 
variable for coordinating system responses, Tv

 is the 
vector of vehicle design targets or specifications, 
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Rsi

L is the vector of system response values passed 
up to the vehicle from the i-th system, and gv and hv 
are vector functions representing vehicle design 
constraints. 
Once the optimal values of the system level re-
sponses Rsi 

, i = 1,…,ns , are determined by solving 
the vehicle-level design problem shown above, they 
are cascaded down to the system level as target val-
ues Rsi

U . At the system level, ns individual minimum 

deviation optimization problems are formulated to 
determine the system design variables xsi 

. System 
responses are assumed to be functions of system 
design variables alone, i.e., Rsi

  = rsi
(xsi

), given the 
two-level hierarchy assumption. The minimum de-
viation optimization problems for the i = 1,…,ns 
systems are formulated as follows: 
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The analytical target cascading process iterates be-
tween the vehicle- and system-level design prob-
lems. At each iteration, values of Rsi

L  and Rsi

U  de-
termined at the system and vehicle levels, respec-
tively, are passed up and down to the other level 
design problem(s). 
For target cascading, the models are decomposed into an 
integrated vehicle model at the top level and four copies 
of a suspension system model at the low level, as shown 
in Figure 5. The top level vehicle model predicts the 
vehicle responses Rv, whereas the suspension model 
predicts the system responses Rsi

, i = 1, 2, 3, 4.  

Two sets of targets were used for this concept truck 
design study.  In the first part of the study, the goal 
was to achieve a fuel efficiency that would be better 
by at least 50% than the one of the Heavy Expanded 
Mobility Tactical Truck (HEMTT). Fuel economy 
was computed at both the Gross Vehicle Weight 
(GVW, truck weight plus payload, 22,977 kg) and 
the Gross Combined Vehicle Weight (GCVW, 
GVW plus trailer, 38,886 kg). Performance metrics 
were to be maintained at the same levels as those of 
the HEMTT. In the second part of the study, specific 
numerical values were not defined as targets; in-
stead, it was attempted to improve all metrics as 
much as possible. 
Attributes of interest for both the series hybrid and 
the electric drive are compared in Figure 6 for the 
first set of targets. Results are normalized such that 
1.0 represents the target values. The first three tar-
gets are achieved. The last three responses are im-
proved compared to the baseline design but do not 
achieve the targets. The maximum speed 
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Figure 5: Hierarchy of models for target cascading 

degradation for the series hybrid configuration comes 
very close to the target. Note that responses that 
achieve or exceed their targets become “neutral” to the 
optimizer, i.e., they do not contribute to the objective 
Thus, responses estimated for GVW achieve their 
targets, while responses estimated for GCVW do not. 
One can deduce that performance targets at GCVW 
were too stringent. The same trend is observed for the 
second set of targets presented in Figure 7. Results are 
normalized with respect to the first set of targets for 
the sake of comparison. In this case the optimizer tries 
to improve all responses as much as possible without 
limits. This leads to a dramatic increase of the ride 
quality. Hybrid vehicle fuel economy shows more 
modest, but tangible further improvements over the 
conventional at both GVW and GCVW, the actual 
fuel economy gains being 17.4 % and 15.6 % com-
pared to the baseline design, respectively. Perform-
ance metrics of the hybrid are maintained at about the 
same level as in the previous study. For the electric 
drive propulsion system only the ride quality displays 
significant further improvement compared to the 
optimization performed for the specific targets, while 
all other responses remain about the same.   
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Figure 6: Achievement of specific targets [11]  

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fuel
efficiency 
@ GVW

Absorbed 
power 

@ GVW 

Max. speed
on flat road

@ GVW 

Fuel
efficiency 
@ GCVW

Max. speed
on 2% grade

@ GCVW 

Max. speed 
degradation 
on flat road

Baseline Series hybrid Electric drive

Better

Worse

 
Figure 7: Achievement of maximal improvement 

targets [11] 



EDIProD’ 2002 

 

85

4. PRODUCT FAMILIES 

Sharing components among products is an effective 
way to cut costs. Identification of the product plat-
form is a key step in designing a family of products 
since sharing components usually results in per-
formance losses relative to the individually opti-
mized variants. Here we describe how this problem 
can be addressed in an optimization framework. 
More details can be found in the references [12-16 ]. 

4.1 Platform-based Design 

A product platform is the set of all components, 
manufacturing processes, and/or assembly steps that 
are common in a set of products.  A product family 
is the set of products, referred to as variants, built 
upon a platform. Component sharing, where one or 
more components are common across a family of 
products, is illustrated in Figure 8. 

 

Figure 8: Platform-based products (component 
sharing). 

The following additional definitions are necessary to 
formulate the variant and family design problems: P 
={A, B, C,…} is the set of m products; xp  is the vector 
of design variables for product p in P; S is the set of 
indices describing a platform; and xp,0 is the “null” 
platform optimal design of product p, corresponding 
to the individually optimized product variants. 
The individual and the family optimal design prob-
lem for product variant p can be formulated, respec-
tively, as follows: 

 

 

(4) 

 

 

(5) 

Platform selection would then require the following 
steps: Quantify sharing penalty by considering indi-
vidual optimal designs and sensitivities of functional 
requirements; decide which components can be 
shared (i.e., determine the platform) based on mini-
mal sharing penalty; optimally design the product 
family around the chosen platform. 

When the products in the family contain a large 
number of components that are candidates for shar-
ing, platform selection entails the solution of a large 
combinatorial problem.  

4.2 Sharing Penalty Vector 

The platform problem is deciding which and how 
many variables to share. The selection of an optimal 
platform can then be done by minimizing the rela-
tive variation of performance of the designs based 
on any platform with n shared variables - while 
remaining in the feasible space for the variants. 
Formally, for two variants A and B this translates to:  

The Sharing Penalty Vector (SPV) is computed 
using first order Tailor series and a heuristic parame-
ter ?  in [0, 1], determined by the position of the 
family solution for a given platform relative to the 
position of the null platform solutions for the two 
variants:  

 
The SPV essentially aggregates the sensitivities of 
the solutions and allows identification of variables, 
with respect to which the optimal solution is least 
sensitive. Sharing those will have little impact on 
individual variant optima. The SPV represents an 
upper bound on ? ???The design variables can be 
sorted in order of increasing associated SPV value 
and a cutoff point for sharing is selected by the de-
signer when SVP values become too large. 
The general methodology is as follows: 
1. Generate product variants based on design re-

quirements and/or geometry of the model(s) (i.e., 
no topological changes). 

2. Develop appropriate analysis models and identify 
inputs and outputs. 

3. Formulate and solve the optimal design problem 
for each variant, i.e., find null platform optimal 
designs. 

4. Compare optimal design variable and sensitivity 
information by selecting ?  and computing the 
sharing penalty vector (SPV) using Eq. (7). 

5. Arrange the variables in order of increasing asso-
ciated SPV value. 

6. Using the SPV, decide which components to share 
or not share. 

7. Formulate and solve the family design problem 
with the chosen platform.  

8. Compare family optimal designs to individual 
variant optimal designs and evaluate performance 
losses (iterate if necessary). 

(6) 

(7) 
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 4.3 Automotive body design application 

Two automotive body structure variants are consid-
ered with different dimensional properties (lengths) 
and functional requirements.  The structures are 
modeled using finite elements in MSC-NASTRAN 
(Figure 9). Modal and static load cases (torsion on 
the front and rear shock towers, and bending) are 
considered. The finite element analysis outputs mass 
m and natural frequencies ? , in addition to dis-
placements and stress responses for static load cases 
of front torsion, rear torsion and bending (denoted 
dft, drt, db), as well as corresponding sensitivity in-
formation for the design variables, these being the 
cross-sectional dimensions of the beams (width b, 
height h, and thickness t) and shell thickness t —a 
total of 66 design variables. 

 

Figure 9: Automotive body structure mode[15]. 

We consider variants based on the same geometric 
model (short wheelbase) that are defined by different 
design objectives and constraints. Two variants with 
competing objectives are designed, denoted “stiff” 
and “lightweight”, respectively. With a “stiff” objec-
tive the designer aims at maximizing the stiffness of 
the structure to improve ride quality; with a “light-
weight” objective the goal is to minimize weight to 
improve fuel economy.  

Flexibility is defined as a weighted sum of the dis-
placements in the three load cases considered (front 
and rear torsion and bending). The weights ap-
proximate the ratios of the expected displacements 
in each load case, hence flexibility is computed as 

f  = dft + drt + 10db.                        (8) 

 

Each variant is optimized individually to obtain a 
null platform design. The individual optimization 
problems and their corresponding optima are sum-
marized in Table 1. 

Table 1: Optimal design problems and associated 
null platform optima . 

 
 

The SPV for the two variants is computed according 
to Eq. (7). The family design solution for the total 
platform represents an upper bound on performance 
loss. The SPV remains low for the first 50 variables, 
then begins to increase sharply. We chose a 54-
variable platform based on this fact. Table 2 shows 
the platform-based product solutions, obtained by 
minimizing the distance between the Pareto set for 
each platform and the null platform optima. The 54-
variable platform shares all but 18% of the variables, 
and presents a loss in performance of 0.6% for the 
stiff variant and 1.16% for the lightweight variant. In 
contrast, the total platform presents a 1.4?% loss in 
performance for the stiff variant and an 18.8% loss 
for the lightweight variant. 

4.4 ATC for product families 

Once it has been decided which subsystems, compo-
nents, etc., will be shared among the products of a 
family, the statement of the optimal design problem 
for the entire family fits the formulation of analytical 
target cascading perfectly. Therefore, the formula-
tion of single-product target cascading has been 
extended to account for multiple-products. In addi-
tion, to account for the presence of both family and 
individual product specifications the concept of 
“local” targets was introduced since the previous 
formulation allowed design targets to be set only at 
the top level. The extended formulation was applied 
to a family problem of automotive side frames [16].   

 

Table 2: Comparison of null platform and 54-variable and total platform. 

               



EDIProD’ 2002 

 

87

5. ENTERPRISE MODELS 

We now look at how to formulate an “enterprise-
wide” decision problem where the net present value 
of the products under consideration for development 
is the objective function. The objective  depends on 
both asset allocation variables and product design 
variables, thus linking product design with financial 
goals. Constraints are imposed to represent the fiscal 
perspective of costs and revenues and the technical 
perspective of product performance. The analysis 
models used to compute the outcomes of those deci-
sions are computationally intensive simulations 
based on both investment and engineering science. 

5.1 Product Portfolio Design 

We demonstrate this idea in a product portfolio 
valuation problem [18]: Given a production capacity 
and cost structure, historical data on sales, and two 
possible products that can be built in the existing 
production facility, what percent of production ca-
pacity should be allocated to each product, and what 
should be the design specifications for these prod-
ucts? The new idea here is that asset allocation and 
properties are determined concurrently. We consider 
decisions to be made by an automotive manufactur-
ing firm that markets premium-compact (PC) and 
full-size sport utility (SUV) vehicles. This market 
segmentation adopted in the study follows the J.D. 
Power classification for vehicles in the United 
States. 
 The firm is assumed to operate in a mature industry 
where complementary assets, such as access to dis-
tribution channels, service networks, etc., are as-
sumed available. It is further assumed that the firm's 
output decision does not affect the product's price. 
Finally, the decision-maker is assumed to be playing 
a game against nature: strategy is affected by an 
exogenously-generated random state, not by com-
petitive interaction. The firm wishes to design new 
engines and transmissions for both PC and SUV 
segments. The PC and SUV segments are low and 
high profit margin segments, respectively. There are 
C units of monthly capacity currently in place for 
each product (engine and transmission), so C is fixed 
and represented in a capacity constraint. It is as-
sumed that this capacity is not expandable.  
The decision-maker faces the following decisions: 
How should the units of capacity be allocated be-
tween the two segments in order to maximize the 
investment’s net present value? What should the 
performance specifications for engines and transmis-
sions be and how do these specifications affect the 
resource allocation decision? Consistent with capital 
budgeting practice, we assume that the firm under 
consideration evaluates investment opportunities 
with a single dominant objective: Maximize the 
market value of the firm's stock. This implies in-
vestments with positive net present value (NPV) 

defined as NPV = ? [PV] - K, where ? [PV] is the 
expected present value of future cash flows and K is 
a constant representing the capital investment 
needed to develop all designs. Other investment 
costs are ignored; for example, the cost of building 
the production facility plant is considered a sunk 
cost because we assume the plant has already been 
built.  

The enterprise-wide decision problem is formulated 
as follows. 

maximize {expected net present value} 

with respect to {engine and final drive 
ratios for the two vehicles, produc-
tion capacity allocation for each ve-
hicle} 

subject to {engineering performance 
constraints for both vehicles, prod-
uct demand constraint, capacity 
constraint, CAFE constraint} 

 

 

 

(9) 

Monthly profit ? ?is being generated to the end of the 
life cycle of each product, Eq. (10). The present 
value of all future monthly cash flows minus the 
initial cost required for the investment constitutes 
the objective function of the decision model, Eq. 
(11). 

 

(10) 

 

 

(11) 

Calculation of expected sales is a challenging task. 
We assume that future cash flows generated by a 
vehicle's future sales are only imperfectly predict-
able from current observation. The probability dis-
tribution is determined in the present, but the actual 
path remains uncertain. We consider product de-
mand and the firm's market share as the two main 
sources of uncertainty. To describe future product 
demand we assume that the automotive product 
demand is a Brownian motion. The mean-reverting 
process is used to model market share uncertainty. 
Sales are expressed as the product of the two sources 

 = (Price Profit Margin - CAFE Cost)
   Units sold) 
? ?

? (

(Cost of Capital)

0
NPV =  [ (Future Cash Flows) ] 

- Investment Cost. 

T
e dt???E

Figure 10: A random walk in the future 
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Figure 11: Parabolic approximation for acceleration 
performance [19] 

of uncertainty defined above, namely, product de-
mand and market share. During the first 24 months 
of product development and production start-up time 
we have zero sales.  
To estimate the expected present value of future 
cash flows we generate a big number of random 
walks; a sample of such a random walk is depicted 
in Figure 10. Next, we obtain the present values 
corresponding to the random walks by discounting 
all future payoffs ? ?across the probability space. 
The expected present value is computed as the aver-
age of these values. Finally, we calculate the NPV 
by subtracting the necessary capital investment. We 
assume that the profit margin represents the variable 
cost structure. The profit margin is set at 1% and 
35% for the PC and SUV segments, respectively.  
Engineering performance is represented in Eq. (9) 
by assuming that the price of the product can be 
expressed as a functional relationship of the vehicle 
attributes, in this case acceleration. The value curve 
method for attribute value assessment is used to 
assess the customer-perceived value of vehicle ac-
celeration. This method is based upon the premise 
that the value of a performance attribute can be rep-
resented by continuous value curves if the perform-
ance is itself continuous [19]. Each performance 
attribute x is assumed to have three specification 
points (Figure 11): the ideal point  where value for 
the attribute is at its highest level, the baseline point 
where value is nominal (that is 1), and the critical 
point where the product becomes valueless inde-
pendent of the level of other attributes. A heuristic 
expression can be used to approximate the interpo-
lating value between the critical and ideal point: 

2 2

2 2
0

( ) ( ) 1
( ) , log

( ) ( )
C I I

C I I

y y y y
V y y

y y y y x

?
? ?? ? ? ? ?? ?? ? ? ?? ? ? ? ?? ?

 (12) 

We will proceed assuming that the only vehicle 
attribute that influences the customer's purchasing 
decision is vehicle acceleration. We assume also, 
that the vehicle price is proportional to the t0-60 

value. This means that if a design achieves value of 
1.1 the firm will price the vehicle 10% higher. We 
would like to mention here that the focus of the 
present work is the link between engineering and 

financial analysis. However, the development of 
customer valence models is critical. Further devel-
opment and validation of the proposed design meth-
odology will help define the desired nature of cus-
tomer valence models and quantify further their role 
in the decision model. 
Bounds on vehicle performance attributes define the 
constraint set for each segment. The constraints are 
expressed in terms of the design variables using 
computer-aided engineering simulation models. The 
particular model used here is the Advanced Vehicle 
Simulator (ADVISOR) program [20], which is a 
powertrain simulation tool. From the ADVISOR 
model library, the automatic transmission versions 
of the Chevrolet Cavalier LS Sedan and the rear-
wheel drive Tahoe are selected as representative of 
the PC and SUV products considered here.  
For each segment the engineering constraint set is 
fuel economy, t0-60, t0-80, t40-60, 5-sec distance, maxi-
mal acceleration, maximal speed, and maximal 
grade at 55mph. The constraint bounds are set at 
values that are 20% beyond the current vehicle 
nominal performance values to allow for new design 
possibilities. 

Constraints related to investment decisions are as 
follows. CAFE penalty should be non-positive: 

CAFECost 0.??                      (13) 

The production for each vehicle shall not exceed the 
total amount that the firm can expect to sell: 

Production Expected Sales? .       (14) 

To estimate expected sales first we average across 
the probability space of demand and market share. 
The average across time yields expected sales. For 
this example we calculated expected sales for PC 
and SUV to be 59,000 and 57,300 vehicles per 
month, respectively. 

The firm's fixed monthly production capacity of 
engines and transmissions must be allocated be-
tween the two segments so that 

PC SUVProduction Production Capacity? ?   (15) 

Problem (9) was solved for two different production 
capacities. The number of maximum expected sales 
for SU vehicles is 57,300. The divided rectangles 
(DIRECT) optimization algorithm was used [2], 
since it can locate global minima efficiently without 
derivative information when the number of variables 
is small. The best feasible solutions and associated 
net present values are shown in Table 3. Shaded 
areas emphasize significantly different values. 

For a capacity of 100,000 we see that the computed 
solution matches our intuition. The portfolio aims at 
producing as many high profit SUVs as the market 
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will bear (57,300).  However, when the capacity of 
the firm equals the market limit, the solution is no 
longer intuitive. One may conceivably see a choice 
to produce only SUVs, making them meet the CAFE 
standard so as not to violate Eq. (13). Yet, forcing 
the SUVs to meet the CAFE standard reduces their 
price because they would suffer performance loss. 
We see that a compromise .between a smaller SUV 
engine (better fuel economy) and a small percentage 
of PC vehicle production yields a more profitable 
portfolio. However, we would not be able to tell 
exactly how much to compromise and how much 
smaller the SUV engine should be without including 
the design variables. 

 
5.2 Analytical Target Setting 
 

In ATC the desired design targets for the product’s 
responses at the top level are assumed given, and the 
problem is to minimize deviations: 

min -
x

R T                          (16) 

Setting the targets is a critical enterprise decision. 
The enterprise model developed in the previous 
section can be used to define the targets analytically: 

max ( ),NPV V?
T

T              (17) 

where the targets are variables. This is defined as the 
Analytical Target Setting (ATS) problem. Solving 
the ATS and ATC problems iteratively, we can en-
sure that the targets set are meaningful from the 
enterprise viewpoint.  

CONCLUDING REMARKS 

The versatility and usefulness of a mathematical 
optimization framework for addressing product 
design questions are largely limited by our imagina-
tion and ability to create the mathematical problem 
statements. This is a significant challenge but the 
accomplishments to date are quite rewarding. Al-
though one needs to know one’s mathematics to do a 
good job in optimization, one should not become 
obsessed with too much rigor. Even the best algo-
rithms are only heuristic solvers for most problems 
of practical value. 

Acceptance by corporate management is also in-
creasing. Linking the purely engineering decisions 
with those that management worries about will only 
increase the optimization’s appeal and the design 
engineers’ credibility. But this linking must be done 
with knowledge of the models from other disci-
plines, such as economics and marketing, which is 
often hard to acquire at the requisite level of quanti-
fication. The added stochastic nature of these models 
also increases solution complexity.  

The alternative, of course, is to make decisions in a 
less informed manner. Whether to optimize or not is 
itself an optimization decision: Decide on the trade-
off between the effort needed to optimize and the 
benefits expected from a successful design optimiza-
tion study. 
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Capacity 100,000 57,300 
Engine Size (PC) 73kW 75kW 
Final Drive Ratio (PC)  3.5 3.4 
Capacity Allocated (PC) 42% 17% 
Engine Size (SUV) 200kW 162kW 
Final Drive Ratio (SUV) 3.7 3.7 
Capacity Allocated (SUV) 58% 83% 
NPV(over 6 years period) $15B $13B 

Table 3: Solutions of the enterprise-wide 
decision problem for different capacities 

Figure 12: Combining 
Analytical Target Setting 
and Analytical Target 
Cascading. 
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