
  

 111 

7th Workshop on Product Structuring – Product Platform Development 
Chalmers University of Technology, Göteborg, March 24-25, 2004 

RELATIONSHIPS IN PRODUCT STRUCTURES 
 

Alison McKay, Damian N.H. Hagger, Charles W. Dement, Alan de Pennington, Peter Simons 

Abstract 
A number of factors are driving today’s product development processes.  Increasing demands 
for sustainable development and concern for whole-life costs are changing the emphasis from 
product realisation to product life-cycle engineering.  Competition is forcing companies to 
redefine their goals and the business models that deliver them.  Consumer demand for 
bespoke products is leading to mass customisation and the adoption of product postponement 
strategies.  As a result, new types of supply chain structure and life-cycle process are 
emerging.  These are likely to continue evolving as new computational infrastructures, such 
as the Grid1, become more widely used. 

These changes are placing increasing pressures on the information systems that are used 
throughout the product life-cycle.  It is no longer sufficient for the product model to support 
just the design and manufacturing processes – it must support the entire product life-cycle, 
including processes that have yet to be defined.  It is crucial that today’s process structures 
are not inadvertently built into the information systems that will be used 20-30 years from 
now.  The question of how to define a product, and the platform upon which it is built, in such 
a way that it will facilitate life-cycle processes – some of which may be many years away and 
whose definition is not yet determined – is a key driver behind the research reported in this 
paper. 

This paper reports research that has resulted in the identification and definition of a number of 
different types of relationship that occur in product structures.  Product data representation 
schemes embodying these different kinds of relationship have been built and evaluated with a 
range of product structures from a number of industrial sectors.  In parallel, a Grid-enabled 
product structure viewer (built upon this framework) has been built.  Experiences gained from 
early attempts to view product structures on the Grid1 will be discussed. 

1 Introduction 
Currently there is no adequate theory upon which product data representation schemes can be 
based.  Such representation schemes underpin product, and so product platform, life-cycle 
models.  Shortcomings in product data representation can have serious consequences for the 
usefulness and effectiveness of the information systems that they underpin.  Product platform 
life-cycle models are underpinned by product data representation schemes that include a 

                                                 
1  A computational grid is a hardware and software infrastructure that provides dependable, consistent, 
pervasive, and inexpensive access to high-end computational capabilities [1][Foster et al, 1998]; the Grid (and 
Grid computing) is concerned with the delivery of coordinated resource sharing and problem solving in 
dynamic, multi-institutional virtual organizations [2][Foster et al, 2001].   
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range of product structures that cover the life-cycle of the platform and the products that are 
built upon it.  If the models are to provide effective support through the life-cycle of the 
platform and products then the underlying representation schemes must support the entire 
life-cycle and the range of computational infrastructures that are used to support life-cycle 
engineering processes.  In addition, product structure visualisation and simulation methods 
and tools will be required. 

2 Background 
The product definitions that support life-cycle processes result from product design processes.  
Product design is inevitably a multi-disciplinary endeavour and different disciplines have 
different viewpoints on what constitutes a design process.  For example, engineering and 
science-based design research tends to be conducted against a backdrop of a well defined 
design process (of which there are many, for example, [3, 4]) whereas researchers from the 
visual arts and humanities tend to regard such processes as inhibitors to creativity and 
innovation and are far less prescriptive [5]. Design practitioners, on the other hand, work 
within stage gated business processes [6].  They need design methods and tools, for example 
to allow systematic evaluation of design alternatives at decision gates, information support 
systems to allow the digital definition of designs and data needed for downstream life-cycle 
processes and they need to work in environments that foster both creativity and innovation.  
The research reported in this paper focuses on a key aspect of any product design process, 
namely, the information that it uses and produces and the different ways in which product 
definitions are represented.   

It is not feasible to assume that a single product data representation scheme for all products 
and processes can be defined and used in all situations.  A more realistic scenario is that 
specific representation schemes will be designed for specific purposes. In this context, 
frameworks for product data representation are needed to guide the implementation and 
deployment of product information systems.   A number of such frameworks are available.  
McKay et al propose a framework for electro-mechanical product definition data that 
decomposes the product definition with respect to level of detail and life-cycle phase [7].  
Van den Hamer and Lepoeter [8], on the other hand,  identify five dimensions of product 
definition data that occur in product data management systems which support configuration 
management processes.   More broadly, the STEP integrated resources offer what can be seen 
as a framework for the definition of products in general [9].  All of these frameworks are open 
to the criticism that they lack a well-founded theoretical basis.  Recent work related to design 
ontologies, for example as a part of engineering design science research [10], aims to address 
this shortcoming.  Research on  the representation of product structures has led to a 
framework for product structuring that enables the representation of product, process and 
organisational structures as collections of elements and relationships [11,12].  The kinds of 
element and relationship to be captured vary according to the context within which the 
product structures are to be used.  For example, a production planning activity may need a 
product breakdown structure (parts related by composition relationships) whereas an 
assembly planning activity may need a physical assembly structure (parts related by mating 
condition relationships).  The research reported in this paper has resulted in the identification 
and definition of a number of different types of relationship that occur in product structures. 

A number of software prototypes have been built upon product data representation schemes 
that embody the different types of relationship.  Each prototype has been evaluated with 
sample data.  This paper will report on an application of the most recent software prototype – 
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a Grid-enabled product data (Bill of Materials) viewer that is intended for use to support 
product maintenance processes.  The Grid can be regarded as an evolution of the World Wide 
Web.  A key difference is that the resources available on the Web are information whereas the 
Grid allows access to a range of different types of resource including information, application 
programmes (including engineering databases) and computer processing cycles.  The earliest 
Grid implementations are allowing scientists and engineers to run high-performance 
computing applications, with large volumes of data, on high-performance computers that are 
accessible remotely from themselves through the Grid.  Grid resources are made available to 
users through Grid services. A Grid service is, in essence, an extension of a web service.    
The Bill of Materials viewer was implemented as a Grid service and linked to an engineering 
database, containing Bill of Materials type structures (parts related through composition 
relationships), that was hosted as a web service.  The Grid service allows users who are 
remote from the database to view product structures stored in the database.   

3 Relationships in product structures 
Three categories of product definition data are presented: 

• the description of  a product at a point in its life-cycle and time; 

• information needed to support configuration management type activities; 

• relationships needed for product realisation. 

The presence of each of these kinds of product definition data governs the extent to which a 
given information system can support product life-cycle processes. 

3.1 Relationships needed to describe a product at a point in life-cycle and time 
If the goal is to capture a given product structure at a given point in time then only core 
relationships are needed.  These are summarised in Table 1.  

Table 1. Core Product Structure Relationships 

 Type Relation of between 

composition containment Entities <-> elements [of entities] 

constitution materiality Entities <-> materials 

inherence characterisation Entities <-> attributes 

qualification conditionality Relations <-> antecedents 

C
or

e 

quantification multeity Relata <-> quantities 

 

3.1.1 Composition relationships  
Composition relationships are the part-whole relationships in Bill of Materials (BOM) type 
product structures.  From the branch of philosophy called mereology, composition 
relationships can be either integral or distributive [13].   

 For integral composition relationships, at some degree of abstraction, parts are the same 
kinds of thing as the whole and all of the parts are spatially contiguous.  For example, an 
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assembly can be said to contain parts; parts may be either components or assemblies; thus 
the parts of are an assembly are the same kind of thing as an assembly itself. This aligns 
with the composition relationships defined in the framework for product structuring [11].   

 For distributive composition relationships, parts are not necessarily the same kinds of thing 
as the whole and the parts are not spatially contiguous.  For example, the parts 
(components and assemblies) of a brake system (a system that delivers braking 
functionality) on a car are not physically co-located but together serve the functions that 
are designated by the name “brake system”.  

3.1.2 Constitution relationships  
Constitution relationships identify the medium through which an entity is realised: for 
example, the type of material from which a part is made.  A given entity can have only one 
constitution.  The entity to which a constitution relationship applies can be either dependent 
or independent. 

 For dependent entities, the constitution of the entity is governed by the constitution of its 
parts (which can be established from its composition relationships).  For example, the 
constitution of an assembly is the materials of its component parts plus any materials used 
to form the assembly. 

 For independent entities, the constitution relationship identifies the constitution of the 
entity directly, for example, the material of a component. 

3.1.3 Inherence relationships 
Inherence relationships relate entities to their properties.  A property is an intrinsic 
characteristic of an entity that is ontologically distinct.  For example, the hardness property of 
a material is ontologically distinct from the colour of a material. 

Given that both elements and relationships are parts of a product [14], both elements and 
relationships in a given product structure can be characterised.  For example, mating 
conditions might characterise an assembly relationship whereas shape might characterise a 
component part.  According to the STEP standard [15], properties are defined, represented 
and presented – these are beyond the scope of this paper.  Inherence relationships themselves 
can be either facetted or dispositional: 

 Facetted inherence relationships are those between an entity and its spatial features, for 
example, topological and geometric forms such as holes, protrusions, faces and surface 
deformations. 

 Dispositional inherence relationships, on the other hand, are those between an entity and 
any property or quantity with a determinable (but not necessarily quantifiable) magnitude. 

3.1.4 Qualification relationships 
Qualification relationships relate [product structure] relationships with conditions that govern 
their existence.  For example, the definition of a car body has two revisions; Revision A has a 
hole for a sunroof in it whereas Revision B does not.  The fact that the car body includes a 
hole for a sunroof would be established through the inclusion of a facetted inherence 
relationship between the body and the hole in the definition of the car body.  A qualification 
relationship would then be applied to the inherence relationship to specify that the 
relationship exists in Revision A of the car body and that it does not exist in Revision B of the 
car body. 
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In practice, general purpose industry strength implementations of qualification relationships 
are not achievable.  A key issue is that such an implementation would require computer 
processing capabilities linked to the product data representation scheme itself, rather than the 
programming language that is used to express it.  A particular challenge is the realisation of 
algorithms that support the full range of arithmetic operators applied to representations of 
physical quantities that are richer than a simple number or numeric expression. 

3.1.5 Quantification relationships  
Quantification relationships relate [product structure] relationships with physical quantities.  
For example, a quantification relationship could be used to say how many engines were on a 
given aeroplane.  The definition of a quantification relationship and its associated physical 
quantities has a number of parameters. 

Quantity: designates a particular number of units. 

Unit: designates a standard quantity in terms of which the quantity is expressed. 

System: defines the system of measurement from which the unit is taken.  

Note: The STEP measure_schema [9] supports the concepts of quantity and unit with 
reference to the ISO system of measurement [16]. 

Magnitude: designates the kind of physical quantity with reference to its dimensionality [17].   

Datum: designates the entities that fall within the scope of the quantification. 

For example, a length of 5mm would have a quantity of “5”, a unit of “mm”, a system of “SI” 
and a magnitude of “length”.  The value of a datum cannot be illustrated through this example 
because the idea of a datum covers multiple physical quantities. 

3.1.6 Designation 
Designation relationships relate entities with names or codes that are used for identification 
purposes. For example, a designation relationship could be used to assign a part number to a 
part.  

3.2 Relationships needed to support configuration management 
Section 3.1 covered the core relationships needed to capture product structures at a given 
point in time and in the product life for a given product.  In this section an extra dimension is 
added – those needed to support configuration management type activities. For this, intrinsic 
adjunct relationships are needed: equivalence, alternation, variation, order and transformation. 
Each relates entities to other entities. 

Before continuing further, some brief notes on the terminology used in this paper are 
provided.  These notes are taken from a previous paper [18]. 

A product family identifies the commonalities and differences between the individual 
products that form a product range. The range of standard hexagonal metric nuts is a good 
example. The product family defines the commonality of all such nuts (for example, the fact 
that they are hexagonal with a threaded hole) with the differences between them (for example, 
the dimensions) given as parameters.  A variant of a product family is an individual product 
that conforms to the product family. For example, an M6 nut is a variant of the standard 
hexagonal metric nut family. It has all of the features that are common to the family and 
parameter values that are specific to itself, for example, the 6mm diameter.  A range of 
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products is a set of variants of a single product family. For example, M6, M8, M10 and M12 
nuts are a range of standard hexagonal metric nuts. 

The variants of a product family are not versions; rather they are different potential products 
that belong to the family, each serves a different purpose.  Different versions of a given 
product result from change; each version of a given product serves the same purpose but in 
different ways.   For example, a later version of a given product may be an improvement on a 
previous version. 

3.2.1 Equivalence relationship     
Equivalence relationships relate [product structure] relationships with things that can act as 
substitutes for the dependent thing in the relationship.  For example, an equivalence 
relationship might be used to define a substitute part in a composition relationship in a BOM 
or it might be used to define a substitute constitution of a given entity. 

3.2.2 Alternation relationship 
Alternation relationships capture options.  Each alternate in a given group has a different 
functionality but is satisfactory in the context of the thing within which the alternates are 
acceptable. 

3.2.3 Variation relationship 
Variation relationships represent diversity.  They define relationships between baselines (for 
example, the generic BOM of a product family) and variants of the family. 

3.2.4 Order relationship 
Order relationships are used to define the relative positions of entities with respect to each 
other.   For example, a process plan has an ordered sequence of steps to define, for example, 
an assembly process. 

3.2.5 Transformation relationship 
Transformation relationships show development over time.  They capture states of entities, for 
example, the versions of a product. 

3.3 Relationships needed to support entity realisation 
The kinds of relationship defined so far are required for product definition processes.  Three 
additional relationships are needed for product definitions needed to support manufacturing 
processes: articulation, factorisation and consolidation.  Collectively these are referred to as 
extrinsic relationships.  These relationships relate product structures, rather than elements and 
relationships, to each other. 

3.3.1 Articulation 
Articulation relationships allow physical entities to be disaggregated.  For example, a 
disassembly process needs a product structure that defines the initial assembly and at least 
two product structures that define the disassembled pieces. 
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3.3.2 Factorisation 
Factorisation relationships allow the physical combination of product structures.  For 
example, sheet metal parts might be nested when cut from a sheet of material; factorization 
allows the conglomeration of a number of parts to be defined. 

3.3.3 Consolidation 
Consolidation relationships allow physical entities to be aggregated, for example, in assembly 
processes. 

4 Grid enabled product structure viewer 
The Grid enabled product structure viewer supports the visualisation of composition 
relationships in product structures. 

Distributed computing is a way of using many computers to perform a single computing task. 
Umar [19] has proposed that a distributed computing system is “a collection of autonomous 
computers interconnected through a communication network in order to achieve business 
functions’’. An advantage of using distributed computing is that advanced computing and 
storage capabilities can be integrated into a single application “system”. This system can be 
constructed by breaking software into components that can be mapped to resources on high-
performance networks, with each application component taking advantage of unique 
capabilities such as fast storage, vector processors, and massively parallel systems [20]. 

Recent research efforts into decentralised distributed computing have focused on the Grid, a 
paradigm that has been defined as “coordinated resource sharing and problem solving in 
dynamic, multi-institutional virtual organizations” [2].  

The demand for collaborative software environments with heterogeneous, loosely coupled 
computer resources, sophisticated workflow management capabilities and built using service-
oriented architectures is growing.  Such environments involve the sharing of both information 
and  processors that operate upon this information. Research into Grid technology is aiming to 
build such collaborative environments and Grid technologies are at an early stage of 
development.   

Service oriented architectures, such as the Grid, are unlike distributed information system 
technologies, such as Common Object Resource Broker Architecture or Distributed 
Component Object Model, because they do not rely on tight coupling between resources or 
vendor-specific implementations. This relieves the scalability and process interoperability 
problems that frequently arise when distributed information system technologies are 
deployed. Current Grid implementations are using open standards and are not specific to a 
given vendor. 

The building of a Grid-based BoM viewer has been used as a case study to implement one of 
the relationship types within a Web service. A product structure database was encapsulated as 
a Web service hosted on an Apache Axis server (Figure 1). A second Web service was 
created to construct the composition relationship visualisation, by accessing the database. An 
interface written using Microsoft .Net technology was used to access the visualisation Web 
service and to display the visualisation. 
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Figure 1. Web services: connections and content 

The aim was to investigate the ability of Grid services to represent and visualise product 
structures that are more complex than currently achievable from disparate heterogeneous 
computer systems. Such computer systems require ad-hoc custom built solutions. 

Hardwick [21] and others have researched the use of distributed [software] component 
technology to support the product lifecycle. This research differs in the underlying technology 
and the opportunity that it offers for outsourcing the means to implement an information 
system. 

5 Results and conclusions 
Three categories of relationship have been identified: 

− those needed to describe a product at a given point in its life-cycle and time; 

− those needed to support configuration management type activities which require 
relationships on how a given product (and so its structure) has changed over time; and 

− those needed to describe how a product relates to a given product life-cycle process, such 
as manufacturing or maintenance, and the agents that execute it. 

Each of these contains a limited number of types of relationship and governs the extent to 
which a given information system can support product life-cycle processes to which the 
product will be subjected.  Key observations from the establishment of the Bill of Materials 
viewer are that the same problems with product data exchange and interoperability exist in 
Grid computing as in any information system; the Grid does not inherently solve any of them, 
in fact, it exasperates them. 

Early indications suggest that the service oriented architecture of the (relatively) open system 
could allow the elevation of the semantics of the product out of the service and into the 
business workflow management layer of abstraction, a key characteristic of a Service 
Oriented Architecture. This may help in the alignment of product structures with the business 
processes and models of an organisation. It may be argued that CORBA can achieve an SOA, 
however it does not provide the same level of flexibility required for setting up a 
collaboration that can be achieved with Grid technology.  
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Further to this, there are economic value propositions that emerge. With no vendors, there is 
no fee for using the technology within an application. There is no need to change the 
integration method when one project ends and another begins if all projects use Grid 
standards. The research into Grid technology is still in its infancy, and industrial-strength 
implementations of it may be years away. 

Composition relationships can be stored and visualised using Grid services and there are 
advantages to doing so: 

− Databases storing data about relationships and the product can be used to construct a 
single representation of a product. The use of distributed databases across Grid services 
needs to be tested. Early efforts2 indicate that the time taken to do an SQL SELECT 
statement across distributed Grid databases is considerably less than existing distributed 
databases.  

− Services can be used to provide knowledge (in the form of software) required to construct 
a visualisation from a database. 

− Engineering analyses can be programmed into Grid services which can be accessed 
through a graphical user interface. 

There are two disadvantages found by the research 

− Grid services do not inherently support product structures: they still require conformance 
to standards such as STEP 

− Grid service software development requires skills beyond those required for 
homogeneous, fixed network solutions. 

The research also raised the following considerations: 

− Information systems designed to be implemented using Grid technology require extra 
dimensions to be considered e.g. the outsourcing of the processing capability leading to 
issues such as loss of control of the information system itself; intellectual property of the 
process owners being in the hands of process executors. 

− Configuration of Grid services is required to allow fit-for-purpose information systems to 
be developed. This leads to the need to be able to represent the services themselves as 
parts, with relationships between them. 

There are questions that still need answering regarding the role of Grid technology in product 
structuring and lifecycle support. 

− Can the entire lifecycle of a product be supported by an information system implemented 
using Grid technology? 

− What are the characteristics of the engineering problem that make it suitable to be 
analysed on the Grid?  

− What engineering needs can be fulfilled by using the Grid?  

− How can the collaborative needs of an organisation be fulfilled using the Grid? 

                                                 
2 AstroGrid, Access Grid Lecture to White Rose Grid and NE e-Science Centre by Guy Rixon on 04/02/2004 
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