
OBJECT ORIENTED MODELING FOR THE INDUSTRIAL
APPLICATIONS

T. Bekasiewicz, M. Gil, K. Szustakiewicz, K. Szustakiewicz

Warsaw University of Technology
Department of Mechanical Engineering Design Fundamentals

e-mail: maciej.gil@hotmail.com, tomasz.bekasiewicz@fackelmann.pl,
k6.jim@wp.pl, jjezik6@wp.pl

Keywords: CAD, object-oriented modeling, design patterns

Abstract: In this article we will describe our experiences in design of CAD software application.
We have started from procedural concept of the application. Second attempt utilized object-
oriented paradigm. Migration to this modern approach was rather difficult on its early steps, but
afterwards it emerged very successful and we have picked all its benefits out. Object oriented
modeling and design promoted us better understanding of the industrial design process supported
by our application, lead us to cleaner software code as well as more maintainable system.

INTRODUCTION

In yr 2004 we have established good relationships
and cooperation with our external industrial partner
POLIMEX -MOSTOSTAL S.A., who is the second
biggest civil engineering company in polish market.
Our first joined project started in one of its
departments - Zakład Krat Pomostowych (Platform
Gratings Dept), where they design and construct
grids, gratings, and wire meshes for platforms, light
bridges, and stairs. They asked us to design and
implement a dedicated CAD application for spiral
stairs design support. Mostostal’s previous efforts in
this area and cooperation with other professional
software houses were not satisfactory. Their legacy,
dedicated solutions based on AutoCAD extensions
were comfortless but first of all they do not speed up
the design process of spiral stairs as expected [6].

After several meetings and discussion about
Mostostal’s requirements we have decided to take on
this task. We of had to elaborate conceptual model
of the system as well as provide ready application
supporting customer needs. We have started with the
team of five master theses –students, two consultants
from our faculty and two of Mostostal Platform
Gratings department. The first section will describe
our first achievements.

The first project was completed and was accepted by
our customer as successful. Mostostal was
encouraged for further cooperation and we have
decided to rewrite our original application in .net
technology to add new features, to ease and enhance
some design steps, add some functionality. Our
system had to optimize stairs configuration, create

all design documentation as well as technology
documentation. This forced us to change the
software development approach. Another point to
consider was our team shrink to two students, two
consultants with Mostostal part limited to only
checkpoint control. With the second project we have
started with object oriented approach. In the time
this text is written we have bypassed all milestones
of it but still some work to follow. Second part of
this article describes our new architecture.

1. PROCEDURAL APPROACH

The first release of the application was developed by
the team of 5 students working cooperatively on
different aspects of the system [2,3,6]. The main
target of their work was to design and provide
complete system, giving to the user the ease and
speed during CAD design process of spiral stairs.
The system has enabled rapid prototyping of
staircase configuration- number of stairs (with their
key parameters, angle and level), platforms,
balusters, etc. and automated generation of 2D and
3D technical documentation. Primary customer’s
requirement was to create easy and comfortable in
use computer system that accelerates time
consuming calculations and also provides error-free
drawings of spiral stairs.

Due to customer’s software policy requirements
there was a limitation to use AutoCAD and/or MS
Office tools. The system was then developed in
AutoCAD VBA. Because we have the team of five
students working in parallel on different parts of the
system, we have established central data exchange

Design methods for practice 182

structure, which was implemented in MS Excel, also
with its VBA extensions. Each student, the
developer, was taking valuable data from the excel
repository, then his aim was to develop a piece of
code for dedicated part of staircase and afterwards,
to put the results and some control data- back to the
excel worksheet. We have then independent
software modules dedicated for stair flights, for
railings, for wall fasteners and CAD drawings. The
excel worksheet took the role of the blackboard [4],
from the blackboard architecture approach. Whilst
the major tasks of MS Excel’s worksheet was to
store data and execute all necessary calculations,
AutoCAD’s VBA, performed all code related to
graphical user interface as well as drawing
generation. Figure 1 presents the concept of the first
release application [3,6].

 Module for
calculations

AutoCAD VBA EXCEL worksheet

Data storing
Repository

Module for data vali-
dation and verification

GUI
Interface

Module for
drawing creation

and plotting

Fig.1. Basic Application Architecture

Figure 2 presents user interaction with the developed
application. The basic scenario was as follows. First,
user enters the entry data. Then he starts several
calculations and afterwards, the effect (staircase
layout) is being presented on the screen. If there are
any errors or layout is not satisfactory then the
designer needs to correct or change some data and
start repeat calculations again. Finally, if the
calculated data are acceptable, drawing module is
initiated and CAD documentation is being
generated.

The application was quite straightforward in the
concept but it had some drawbacks. There was only
one fixed algorithm that enabled user to go through
the whole stairs layout design process. Any
modification or update required repeating the
process from the very beginning. Although the
calculations were far quicker than legacy manual
procedures, but any update in staircase layout
required to restart the design process. This solution
was not convenient for the user because in order to
receive required values of output parameters, it
required predicting, which input parameters should
be modified and how. Moreover this inconvenience
caused the application time-consuming in usage.
Additionally, procedural programming in VBA
caused some extra performance degradation.

All data required for
plots

error
handling

Calculations
start

data
in/out

Drawings
generation
start

data in
data out

verifies output
design

submits data

USER- the designer

GUI

Data Storing
Repository

Processing module
(calculations)

Data validation
and verification

Drawing
Plotting Module

Properties’
check

Fig.2. User Interaction with the system

Very long and complicated calculation and drawing
subroutines with numerous code loops are one of the
main reasons why the code was executing slowly
and afterwards, is was also difficult to maintain.

Mostostal accepted the first release, as the
application worked reliable and produced error-free
documentation, although, the customer has identified
all above disadvantages. To meet customer’s
growing needs and requirements we have decided to
improve our application and add some new
functionality that couldn’t be done in the legacy,
procedural approach. We have decided to redesign
the system and implement it in .NET, object-
oriented technology.

2. OBJECT ORIENTED APPROACH

The customer recognized the first implementation.
The application fulfilled its main requirements – it
has accelerated laborious calculations, stair steps
calculations and afterwards it generated AutoCAD
documentation. Although it had some limitations-
the code was closed, difficult to maintain and
extend. Any change in the future customer
requirement, like change in the interoperability with
next release of AutoCAD or addition of another step
stair type required substantial coding. The code itself
was not clear and practically required only its
authors for reading and updating [6].

These weaknesses brought down the decision to
begin next project on the reengineered version of the
application. After several meetings we have decided
to implement this application in object-oriented,
.NET technology. We have started with the new
project. Its code name was ‘LaScala’. We have
decided to utilize modern, object-oriented approach
based on .NET. The next sections describe the
software alternatives we utilize in the reengineered
version of the application. We have found the notion

PART II Specific methods and related topics 183

of the design patterns is applicable in the area of
CAD software development.

During design process of the applications we meet
with the similar problems in different parts of the
designed applications. The same, suitable solutions
emerged the in many places of the application. We
could apply the solutions to these issues using the
notion of design patterns [1,12,15].

The design patterns describe a commonly recurring
design problem that occurs in a particular context
and based on a set of guiding force or recommend
a solution to it [1]. The solution is usually a simple
mechanism, set of interrelations between two or
more classes, objects, services, processes, threads,
components, or nodes that work together to solve a
general design problem within that particular
context. We perceive design patterns as set of
considerations built on the top of the object-oriented
programming but they are the part of this
technology. Design patterns provided us and helped
to describe solutions to specific problems we met
during software design. The design pattern is not
a ready to use solution [14]. It is a template, mini-
architecture, set of guidelines how to solve
a problem that can be used in many different
occasions. The design patterns are not algorithms
because they don't solve the computational problems
rather than design problems. Using the design
patterns we have speed up the development process
by providing those already tested, proven
development paradigms. But the most valuable
benefit was the design patterns made our own
designs more flexible, modular, reusable, and
understandable.

We can classify the design patterns based on
multiple criteria, the most common of which is the
basic underlying problem they solve. During years
of research and practice in software development
many design patterns has emerged and has been
elaborated, the most common are:

• Fundamental patterns: delegation pattern,
functional design, interface pattern, proxy pattern,
and immutable pattern.

• Creational patterns: abstract factory pattern,
anonymous subroutine objects pattern, builder
pattern, factory method pattern, lazy initialization
pattern, prototype pattern, and singleton pattern.

• Structural patterns: adapter pattern, bridge pattern,
composite pattern, container pattern, decorator
pattern, extensibility pattern, façade pattern,
flyweight pattern, proxy pattern, pipes and filters,
private class data pattern.

• Behavioral patterns: chain of responsibility
pattern, command pattern, event listener,
interpreter pattern, iterator pattern, mediator
pattern, memento pattern, observer pattern, state
pattern, strategy pattern, template method pattern,
visitor pattern, single-serving visitor pattern,
hierarchical visitor pattern.

• Concurrency patterns: active object, balking
pattern, double checked locking pattern, guarded
suspension, leaders/followers pattern, monitor
object, read write lock pattern, scheduler pattern,
thread pool pattern, thread-specific storage.

• Architectural patterns: model-view-controller
pattern, presentation-abstraction-control pattern,
and client-server pattern.

Software factories is a paradigm for automating
software development that integrates component
based and model driven development [5,7,12],
software architecture, aspect oriented programming,
and requirements, process and software product line
engineering to increase agility, productivity and
predictability across the software life cycle.

2.1. Model-view-controller pattern
The model-view-controller [1,14] pattern (named
also MVC) is a software architectural pattern that
separates an application’s data model of the domain,
the graphic user interface representation, and the
actions based on user input (control logic) into three
separate classes so that modifications to one class
can be made with minimal impact to the others:

• Model. The model manages the behavior and
domain-specific representation of the information,
responds to requests for information about its state
(usually from the view), and responds to
instructions to change state (usually from the
controller).

• View. The view renders the domain-specific
model into a form suitable for interaction. The
view is typically a graphic user interface element.
The view manages the display of information.

• Controller. The controller responds to events
from the model and/or from the view. The
controller interprets the mouse and keyboard
inputs from the user, informing the model and/or
the view to change as appropriate.

Fig.3. Model-view-controller pattern class structure

Model-view-controller, shown in figure 3, is one of
the fundamental software architectural design
patterns. Its main purpose is the separation of
graphical user interface logic from the application’s
business logic.

2.1.1. Main MVC Application Models

In our application there are actually two project
models that are corresponding to the MVC
paradigm. The first one we called Stairway
Computation Model and the second one Stairway
Detailed Model. Both of the models consist of group

Design methods for practice 184

of objects represented in the programming code by
classes, which are organized using encapsulation,
inheritance and polymorphism.

The main object of the newly developed system is
the StairCaseApplication, which represents our
application after run. It contains collection of
document objects – projects of stairs that are created.
Going further each model has its own structure of
objects.

As far as Detailed Model is concerned it’s a full
representation of all real components that can exist
in the spiral stairway structure, for example steps,
newels, but also brackets, bushes and even bolts.
The Computation Model is not so sophisticated. It
has only objects, which are necessary for copulation
of the stairway layout, i.e. three-dimensional
configuration of stairs, such as tiers, platforms and
steps. Classes represent all stairway objects and each
class has its members referred to properties of

objects and methods - actions that can be taken on
them. According to the MVC, all the objects and
their properties constitute the full model of data and
processing, but at the same time they are completely
independent from any user interface (View) or
controller part.

The View part of the MVC for main models is
located in the main application form. It is MDI form,
so it can contain set of child forms. Child forms are
representation of document objects. We have
deployed the concept of showing different kinds of
graphical presentations of stairway models on these
forms, e.g. 3D view, ‘lemon’ layout and others.
After choosing a document object, the hierarchical
structures of staircase models objects are drawn in
the tree view controls, which are also placed in the
main form. The main window contains two property
grids as well – they are to present particular
properties of the model objects (fig.4).

Fig.4. LaScala Main Window

As far as Controller is concerned, it is nearly
impossible to point one, single place where it is
implemented. The Controller in MVC consists of the
set of events and methods spread across the
application code. These events trigger on users’
actions. Controller’s methods action the Models
methods or change the View itself. For example
AddStair_MenuItem_Click event handler res-
ponds to appropriate click event and guides to the
StairCollection Add method in the Model
causing its changes by adding new StairItem.

2.1.2. Three-dimensional layout MVC

There is also another, independent MVC model used
for specific calculations supporting stairway three-
dimensional layout. It contains collection of result
objects, where each object represents different result
in stairway layout computations. This project has its
own view - graphical user interface that presents
collection of result objects from the calculation
process. Names of the result objects are presented in
the tree view control. After choosing a result its
properties are shown in the property grid control and
the graphical representation is drawn in the
proprietary developed graphical control (fig.5.)

PART II Specific methods and related topics 185

Fig.5. Dialog for three-dimensional layout optimization

2.2. Command pattern
The command pattern is a software behavioral
pattern in which objects are used to represent
actions [12]. Command pattern encapsulates
a command request as an object, letting developers
to parameterize clients with different requests,
queue or log requests. Command pattern enables
supporting undoable operations keeping a history
stack of the recently executed commands. If the
user wants to undo command, the program executes
the most recent command object’s undo() method.

Fig. 6. Command pattern class structure

Command pattern enables also to prepare macro
recording (macro command). If all actions are
represented by command object then the program
can keep a list of command objects as they are
executed. Program can execute the same command
objects again in sequence.

The classes and/or objects participating in this
pattern are:
• Command: declares an interface for executing an

operation.
• ConcreteCommand: defines a binding between

a Receiver object and an action, implements
Execute method by invoking the corresponding
operation(s) on Receiver.

• Client: creates a ConcreteCommand object and
sets its receiver.

• Invoker: asks the command to carry out the
request.

• Receiver: knows how to perform the operations
associated with carrying out the request.

Currently in our application, the Command Pattern
paradigm is mainly used to support operations like
adding or removing objects within collections. Our
main form – frmApplication (Client) has a set of
methods like ‘Add…’ and ‘Remove…’ where new
instances of appropriate ‘Add…’ and ‘Remove…
commands (ConcreteCommands) are created and
then executed by suitable instance of the Invoker
class. Suitable instance of the invoker class is
meant here as that invoker which is a private field
of activate document (project in our application).
Because in our case of StairCaseApplication
user can work on multiple projects (documents) at
the same time, we have decided to provide each of
them with it’s own invoker. Each invoker, except of
invoking commands (method ExecuteCommand),
keeps also a history of commands executed when
working with specified project. This feature gave us
straightforward way to implement Undoing and
Redoing functionality of last executed commands.
Every instance of the invoker class has Undo and
Redo methods that executes or reverse-executes
particular command from the history stack
of executed commands.

This history is stored in an array type variable in
every instance of the invoker class, so user can
work on multiple documents, switching between
them and the history of completed actions is always
remembered separately for each project. Current
command is always kept in a private variable in the
invoker so the application knows which command
should be undone or redone from the commands
history.

Depending on the particular command, different
instances of the Receivers can be passed to the
command as its parameter. As long as we are

Design methods for practice 186

concerning adding or/and removing objects in
collection, the Receiver is the collection itself or the
object which contains this collection. Receiver
is passed to the ConcreteCommand and Receiver’s
Add or Remove action is then executed via
ConcreteCommand’s Execute method.

There is a special concept of rearranging
implementation of Command Pattern in our
application. We are considering representation of
all simple activities by basic commands and more
complicated activities by so called macro
commands, which are certain sequences of basic
commands. We can see this makes our code clearer,
better organized and thus easier to maintain.
Additionally, undoing and redoing should work
more smoothly as we enable undoing and redoing
of every single action that can be performed in the
application’s run time and not only adding and
removing items in collections.

2.3. Abstract factory pattern
Abstract factory pattern is a software creational
pattern, which provides an interface for creating
families of related or dependent objects without
specifying their concrete classes [12,15]. This
pattern enables separating the details of
implementation of a set of objects from its general
usage.

The classes and/or objects participating in this
pattern are:
• AbstractFactory: declares an interface for

operations that create abstract products.
• ConcreateFactory: implements the operations to

create concrete product objects.
• AbstractProduct: declares an interface for a type

of product object.
• Product: defines a product object to be created by

the corresponding concrete factory, implements
the AbstractProduct interface.

• Client: uses interfaces declared by classes:
AbstractFactory and AbstractProdut.

Fig. 7. General abstract factory pattern class
 structure

Use of this pattern made us possible to interchange
concrete classes without changing the code that
uses them. To be more specific, one of the sample
places it is used in our application is to separate the
details of implementation of different kinds of CAD
engines we are going to use to generate technical
documentation of stairs. It will also allow us to add
another CAD engines in the future without any
substantial change inside the code.

There is one, main, project that contains Abstract
Factory – DrawingEngineFactory and Abstract
Product – IDrawingEngine.

IDrawingEngine constitutes interface for a type
of graphical CAD engine object. There are only
declarations of subroutines referenced to all CAD
engines, which draw particular graphic objects such
as line, arc, etc. and also stairs object like blade,
bush, newel etc. DrawingEngineFactory
declares an interface for creating different kinds of
CAD graphical engines.

Furthermore, there are also other projects with
classes, which implement the IDrawingEngine
interface. They are in fact implement subroutines
declared there. These classes represent Concrete
Products such as AutoCADDrawingEngine,
CatiaDrawingEngine and many others we can
decide to join with separate projects.

Our main form, frmApplication is the Client
and uses interfaces declared in the classes named
DrawingEngineFactory and
IDrawingEngine.

We have chosen the design slightly different that
classical abstract factory pattern. One detail that is
missing from standard factory pattern is misuse of
ConcreteFactory classes. Instead of this, the client
can use specific CAD engine through an abstract
DrawingEngineFactory. This class consists
of read-only property of IDrawingEngine type
– DrawingEngine, which returns appropriate
concrete drawing engine instance. It is possible
because we store the information the designated
configuration file. The information stored is:
Assembly file and Type of object. Assembly file is
the full path to the library file (.dll) of the
specific CAD engine. Type of object is simply the
name of the class, from which specific object is
going to be created. It depends on user personal
settings, which drawing engine will be in use.

PART II Specific methods and related topics 187

Fig. 8. General abstract factory pattern class

structure

If we want to execute drawing subroutine from the
Client code directly, we have to create the new
DrawingEngineFactory object with specific
CADDrawingEngine stored in its property and then
call appropriate subroutine of the drawing engine,
for example
Dim factory As New _
Engines.DrawingEngineFactory _
factory.DrawingEngine.DrawBlade(blade)

The biggest advantage of using this software
pattern is that we do not need to change any of the
Client code when choosing, switching to or
developing different drawing engine. The only
required action is to update settings in the
configuration file.

2.4. Singleton pattern
Singleton pattern is a software creational pattern
that ensures a class only has one instance, and
provides a global point of access to it [15].
Singleton pattern is useful when exactly one object
is needed to coordinate actions across the system.
This pattern is implemented by creating a class with
a method that creates a new instance of the object if
one does not exist. If an instance already exists, it
simply returns a reference to that object. To make
sure that the object cannot be instantiated any other
way, the constructor is made either private or
protected.

The classes and/or objects participating in this
pattern are (fig.4):

• Singleton (Load Balancer): defines an Instance
operation that lets clients access its unique
instance. Instance is a class operation, responsible
for creating and maintaining its own unique
instance.

Fig. 9. Singleton pattern class structure

In our application we use singleton pattern to
provide ability of creating only one instance of
StairCaseApplication class. This class allows
us to create object that stores all data about
staircase projects during application runtime. The
singleton pattern ensures that only one instance of
application class can be created, which means that
only one executable of the LaScala program can be
loaded into memory.

Design patterns have helped us in the way we was
thinking about, designing and implementing object-
oriented application. We have found them
applicable in many stages of this project
development. They gave us new level of abstraction
for system design. They provided us with a
common vocabulary to communicate, explore and
discuss various design alternatives

3. .NET Technology
Microsoft’s .NET is the new programming model
for building desktop, mobile, and Web-based
applications [9,10,11]. This is very important
feature. With .NET we are not limited to build one-
tier, closed application. This is in fact complete
programming environment giving us the flexibility
– we can build desktop application for engineers
designing staircases, with possible infinite number
of interfaces for example database storage of
staircase design cases or staircase design
alternatives, web-services for design presentation to
the management or Mostostal’s customer. It was
possible because we have embedded the system
with .NET architecture. We would like here to refer
to the .NET architecture, which is three things: a
library of unified core classes that provide the core
for applications, presentation classes for developing
web and desktop (Windows) applications, the
Common Language Runtime (CLR) [10,13], an
environment in which .NET programs are executed.

In .NET, code is compiled twice - first into
Intermediate Language - by the compiler on
development machine. Then again - at runtime,
when the code is executed by the CLR. This has
very positive outcomes: regardless of the language
in which the source code is written, whether it’s C#,
Visual Basic .NET or C++, it’s compiled into the
same intermediate language and this intermediate
language is distributed to the end user. Thanks to
this we could write one, consistent application,
where main design logic is written in Visual Basic,
but other code, like 3D Graphics is written in C#.

4. SUMMARY
We would like to emphasize that that object-
oriented technology is more than just away
of programming or organizing application code.
It applies certain techniques to the entire software
development lifecycle. This is the way thinking
of and modeling real life tasks.

During the development of this project we have
discovered use of the notion of design patterns very

Design methods for practice 188

useful, especially when dealing with the complexity
of the CAD system with its formal model, user
interface and calculations running in background
(application logic). Design patterns represent the
most frequently used communication structures
of programs. This makes them reusable or better to
say applicable in many different fields. We have it
proven very useful when developing customized
CAD application. By separating different aspects
of the objected oriented model of the application –
according to each design paradigm guidelines- each
of these aspects can be developed, modified and
maintained independently.

When using design patterns we were actually
possible to simplify complex problems by making
the encountered problems more general and by
treating them at higher level of abstraction. These
patterns also could be tested in parallel on different
structures, we could develop complete software
components, utilize and test the functionality of one
software pattern, and afterwards – transfer its
concepts by deploying it into our LaScala project.
These well-tested components generated by using
design patterns guides let us lower the possibility of
making errors and saved time in development and
testing.

5. FUTURE WORK
At the time of writing this document most parts of
the new, redesigned system works fine and we put
our focus on the components displaying 3D
graphics (DirectX) and generation AutoCAD
documentation (DXF).

After we complete all tasks related to this project
we plan to focus on creating a generic CAD
framework where we will offer consistent
architecture with complete library of classes
available for rapid development of specialized CAD
tools. The architecture will be derived from LaScala
project. This framework will be like meta- software
pattern consisting of special configuration of
patterns we have been using in our current project
and described in this article.

References

[1] Trowbridge D., Mancini D., Quick D., G.
Hohpe, Newkirk J., Lavigne D.. Enterprise
Solution Patterns Using Microsoft .NET.
Microsoft Corporation, 2003.

[2] Jarosz A.: Budowa generatora modeli
geometrycznych schodów przemysłowych dla
Mostostal Siedlce – Stężenia. IPBM, Warsaw
University of Technology, master thesis,
2005.

[3] Chyliński Ł., Pruszyński J.: Budowa gene-ratora
modeli geometrycznych schodów przemysłowych
dla Mostostal Siedlce – Barierki i Pomosty. IPBM,
master thesis, Warsaw University of Technology,
2005.

[4] Gil M.: Proces projektowania w budowie maszyn z
zastosowaniem narzędzi kompu-terowych do
integracji jego elementów. IPBM, Warsaw
University of Technology, PhD thesis, WPW,
2001.

[5] Ferguson J., Patterson B., Beres J., P. Boutquin,
Gupta M.. C# Bible. Wiley Publishing, Inc., 2002.

[6] Szustakiewicz K. Szustakiewicz K..: Budowa
generatora modeli geometrycznych schodów
przemysłowych dla Mostostal Siedlce – Schody
Spiralne. IPBM, Warsaw University of
Technology, master thesis, 2005.

[7] Hamilton J.. Object-Oriented Programming with
Visual Basic .NET. O'Reilly, October 2002.

[8] Brown E.. Windows Forms Programming with C#.
Manning Publications Co., 2002.

[9] Wakefield C., Sonder H.-E., Wei Meng Lee.
VB.NET Developer’s Guide. Syngress Publishing,
Inc., 2001.

[10] Grundgeiger D.. Programming Visual Basic .NET.
O'Reilly, January 2002.

[11] Riel, Arthur J. Object-Oriented Design Heuristics.
Addison-Wesley, 1996.

[12] Spencer K., Eberhard T., Alexander J.. OOP:
Building Reusable Components with Microsoft
Visual Basic .NET. Microsoft Press, November 9,
2002.

[13] Reynolds-Haertle R. A.. OOP with Microsoft
Visual Basic .NET and Microsoft Visual C# Step
by Step. Microsoft Press, 2002.

[14] Fowler, M. Patterns of Enterprise Application
Architecture. Addison-Wesley, 2003.

[15] Gamma, Helm, Johnson, and Vlissides. Design
Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

