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Abstract: The paper introduces two examples of user-centric evolutionary design. Each illustrates a differing 
degree of user interaction. The first example relates to the inclusion of subjective aesthetic criteria to 
complement quantitative evaluation in the conceptual design of bridge structures.  The second relates to the 
succinct graphical presentation of complex relationships between variable and objective space and the manner 
in which this can support a better understanding of a design domain. This improved understanding can 
contribute to the iterative improvement of initial machine-based representations. Both examples complement 
and add to earlier research relating to interactive evolutionary design systems (IEDS). 

1. INTRODUCTION 

The paper presents research and development 
relating to powerful machine-based search and 
exploration systems that, through appropriate user-
interaction, allow both quantitative and qualitative 
evaluation of solutions and the extraction of 
information from complex, poorly understood 
design domains. The integration and capture of user 
experiential knowledge in order to support and 
increase understanding is of particular interest. The 
objective is the realisation of user-centric intelligent 
systems that overcome initial lack of understanding 
and associated uncertainty; support an improving 
knowledge-base; allow the integration of designer 
subjective judgement and stimulate innovation and 
creativity. 

Interactive evolutionary computing [1] in the main, 
relates to partial or complete human evaluation of 
the fitness of solutions generated from evolutionary 
search. This has been introduced where quantitative 
evaluation is difficult if not impossible to achieve 
e.g. graphic arts [2] and hazard icon design [3]. Such 
applications rely upon a human-centred, subjective 
evaluation of the fitness of a particular design, image 
etc. Partial human interaction that complements 
quantitative machine-based solution evaluation is 
also in evidence. For instance, the user addition of 
new constraints in order to generate solutions that 
are fully satisfactory within an evolutionary nurse 
scheduling system [4].  

Interactive Evolutionary Design Systems (IEDS) 
also represent a human centric approach [5, 6] in 

that they generate and succinctly present information 
appertaining to complex relationships between the 
variables, objectives and constraints that define a 
developing design space. In this case, solutions 
generated from stochastic population-based search 
techniques provide information to the user which 
supports a better understanding of the problem 
domain whilst helping to identify best direction for 
future investigation [7] especially when operating 
within poorly defined decision-making 
environments.  

In an attempt to categorise these various forms of 
IEC it is possible to view complete human 
evaluation as explicit whereas partial evaluation and 
interaction are less explicit, more subtle forms of 
human involvement. Completely implicit interaction 
occurs where users are unaware of their role in the 
evolution of a system (e.g. Semet’s web-based 
tutorials [8]). A simple implicit/explicit spectrum of 
interactive evolutionary approaches can thus be 
developed as shown in figure 1 [9].   

Two examples of user-centric intelligent systems 
that sit at differing points along this spectrum are 
presented. The first is closer to the more established 
explicit interaction where user subjective evaluation 
is in evidence. However, this subjective evaluation 
complements detailed, machine-based quantitative 
evaluation. The second is current interactive 
evolutionary design research relating to problem 
definition and the iterative interactive improvement 
of machine-based design representations. This work 
sits further toward the implicit end of the spectrum. 
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2. INTEGRATING AESTHETICS 
WITH INTERACTIVE EVOLUT-
IONARY DESIGN PROCESSES 

This example brings together agent-based machine 
learning, object-oriented representation, agent-based 
control, evolutionary computing and user-based 
subjective evaluation. We are searching for 
aesthetically pleasing, feasible designs during 
conceptual design. Figure 1 illustrates the main 
components of the system. The user defines initial 
design requirements and aesthetically evaluates the 
designs generated via an evolutionary search, 
exploration and optimisation system (ESEO). 
Agents have tasks relating to initial population 
creation based on design requirements, the 
monitoring of evolving designs for feasibility and 
evaluation of machine-based aesthetic criteria. The 
ESEO identifies design solutions that can be 
considered high performance in terms of structural 
feasibility and stability; materials cost and rule-
based aesthetics. 

 

Fig. 1. The User-centric System  

Research is now concentrating upon the design of 
‘urban furniture’ in the form of interesting and 
aesthetically pleasing seating arrangements for open 
areas. However, proof-of-concept has been initially 
achieved via simple bridge design upon which we 
concentrate here. 

2.1. Representation 
A highly flexible and robust component-based 
representation has been developed in order to 
accommodate complex design entities with many 
related sub-systems / components [e.g. 10, 11, 12]. 
Evolutionary Programming (EP) [13], a purely 
mutation-based evolutionary algorithm, has been 
selected to overcome feasibility maintenance 
problems incurred when using crossover.  

The representation must be able to model all 
possible designs and be robust enough to be 
manipulated by a stochastic search process. [14]. A 
collection of primitive elements represents an 
overall design and elements with different design 
properties can be included in the set of design 
primitives. A simple bridge design is divided into a 
Span Element collection which form the span of the 

bridge and a Support Element collection which 
form the support of the bridge (figure 2).  

 

Fig. 2: Details of the object based representation. 

Simple beam or angled beam span bridges with and 
without support require only two basic Elements ie. 
the angled section Element (to be used as a span 
element only) and a simple rectangular Element 
which can be used as both spanning and supporting 
element. The principles of object-oriented 
programming such as inheritance can be utilised i.e. 
to add a new kind of element the basic properties of 
Element can be extended. 

The representation supports the transition from 
abstract concepts to well defined specifications as it 
can represent designs at all levels i.e. at the abstract 
level by using high level objects / elements and at 
the well-defined level as a set of specifications.  

2.2 Mutation 

 
Fig. 3. Design before mutation 

Assume the solution to be mutated is a basic beam 
bridge supported at each end with a single 
intermediate support (B3) and two span elements 
(B1, B2) (figure 3). L = span, H = maximum height 
of the bridge (figure 4).  

Separate mutation rules exist for the two arrays of 
elements from which a rule is selected randomly. 
Supports can only move left or right and their height 
depends upon the thickness of the spanning element.  
Hence two rules for left and right movement and two 
for increasing and decreasing width exist for a 
supporting element. Span element depth can vary 
but upper surfaces must be level and continuous 
with no overlap or space between them. Two rules 
therefore exist i.e. to increase or decrease the span 
depth. Now, if mutation moves support (B3) two 
units to the left and decreases the thickness of the B2 
support by two units then the X value attribute of the 
B3 object will be similarly decreased and the height 
of the B2 object in the span array will be decreased 
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Fig. 4. Structure of a design solution. 

 
 
Fig. 5. Design after mutation 

by 2 units. The height attribute of the support will be 
automatically adjusted for continuity and any 
overlap will be removed. The mutated design is 
shown in figure 5. 

2.3. Introduction of agency 
We initially attempted to evolve feasible structures 
using EP but this proved a difficult and lengthy 
process. However, rule-based agent assembly is 
straightforward and rapid. An approach where 
agents create the initial population and provide a 
continuing ‘repair’ capability combined with EP 
search, exploration and optimisation across the space 
of possible structures was therefore introduced.  The 
Construction and Repair Agents (CARAs) assemble 
structures of varying size and shape based upon 
specifications re restrictions on placement of 
supports and types of span section. EP provides the 
SEO process while CARAs keep a check on 
potential disruption processes and repair the 
structure where necessary.    

2.4. Simple structural criteria  
The CARAs can currently create three kinds of 
bridges:  
• Simple beam bridges without supports (Type 

1a).  
• Simple beam bridges with supports (Type 1b).  
• Simple beam bridges with angled span sections 

and supports (Type 2).   
Initial populations comprise a mixture of these 
designs which are structurally evaluated via simple 
length/depth ratios and column buckling criteria.  

Type 1a is analysed as a simple beam under uniform 
distributed loading via a simple heuristic where an 
ideal length to height ratio for a span element of 
20:1 is utilised using equations 1 & 2 ie the closer a 
span section is to the ideal ratio (R) the better its 
fitness.  Li and Hi are the length and height of the ith 
span element. It is evident that the closer the 
dimensions of the span elements are to the ideal ratio 
(R) the lower will be the value of Fi. At the 
minimum all Fi’s are equal to zero and thus stability 
is equal to one.  
 

                                              (1) 

 

                           (2)                           
 
In Type 1b buckling in the columns is also 
considered using equation 3. 

        
                                          (3)             

Where  P’ = maximum possible load;   E = modulus 
of elasticity, I = moment of inertia; H = column 
height. 

Columns are assumed to share the loading from the 
span sections between the end supports. A column 
satisfying the buckling criteria can either increase or 
decrease in thickness. Otherwise it can only increase 
in thickness.  

2.5. Example 
A basic EP approach is used with a population size 
of 100 solutions. Tournament selection is utilised 
with a tournament size of ten and the system is run 
for 100 generations. A selection of members from 
the initial population are shown in figure 6. In this 
first experiment structural criteria alone was utilised. 

 
Fig. 6. Sample of mixed initial population of bridge 

shapes. 

 
Fig. 7: Bridge profiles optimized using structural 

criteria only. 
Examples of the three bridge types are evident. The 
optimal designs shown in figure 7 are achieved 
within 100 generations.  The angled span bridges 
turn out to be most efficient in terms of the structural 
criteria alone. The other two design types have not 
survived. 

2.6. Aesthetics and User Evaluation 

Generic guidelines for aesthetic bridge design are 
available [15, 16] but these only provide a partial 

P’= π2EI 
        H2             
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quantification via generic rules. Complete aesthetic 
evaluation must involve both machine rule-based 
and designer-led subjective factors. The following 
aesthetics have been hard coded: 

1. Symmetry of support placement (A1).                       
 
2. Slenderness Ratio  (A2).    
                                           
3. Uniformity in thickness of supports  (A3). 
                   
4. Uniformity in thickness of span sections (A4).             

Each aesthetic rule is evaluated by a separate 
‘Aesthetic Agent’. The ‘Rule-based Aesthetic 
Fitness’ is calculated as: 

∑
=

=
4

1

_
i

ii AwFitnessAesthetic                              (4)                                                                             

 
Where wi are weights for each of the aesthetic rules 
(Ai = A1 to A4) which can also be modified on-line.  

‘User-assigned Aesthetic fitness’ (Ufit) is assessed 
by the designer on a rising scale of 0 to 10. Overall 
user evaluation operates thus: 

1. User stipulates the frequency of user interaction 
(e.g. once every 10 generations). 

2. User aesthetically evaluates a preset number of 
population members from the initial population 
(usually the top 10 members i.e. those with highest 
fitness re stability, material usage and explicitly 
defined aesthetic criteria). 

3. The EP system runs. 

4. Population members are aesthetically evaluated 
by the user every n generations. 

5. Repeat steps 3 and 4 until user terminates the 
evolutionary process. 

The overall fitness function now includes ‘Aesthetic 
Fitness’ and ‘User Assigned Aesthetic Fitness’ 
(Ufit). Furthermore, weights have been added (w1 to 
w4) to each of the objectives which the user can 
modify on-line to influence evolutionary direction, 
i.e:     

Ft = (w1*St) + (  w2/MU  ) + (w3* AF)  + (w4*Ufit) 
                                                                                (5) 
Where: 
Ft = Solution fitness 
MU = Material usage 
AF = Aesthetic fitness (rule-based) 
Ufit = User-assigned fitness 
St = Structural Stability 

Figure 8 shows aesthetically pleasing cross-sections 
after 30 generations with user evaluation every ten 
generations. The aesthetic objectives (A1 to A4) are 
clearly reflected in them. The span elements are of 
the same size. The supports are of nearly uniform 
thickness and their placement is also symmetric.  

 
Fig. 8: Aesthetically pleasing bridge profiles. 

Due to user interaction, the solutions take on a 
variety of different aesthetically pleasing shapes that 
satisfy the explicitly defined aesthetic guidelines 
(A1 to A4) and the implicit aesthetics of the user 
(Ufit).  

2.6. Integrating aesthetics with more 
free-form evolutionary design 

Current work [17] is extending the capabilities of the 
user-centric evolutionary system to handle greater 
complexity in terms of representation and aesthetic 
evaluation. Proof-of-concept has been provided by 
the initial work relating to simple bridge design 
which has allowed us to attempt the interactive 
design of ‘urban furniture’ in the form of novel and 
aesthetically pleasing seating arrangements for parks 
and other public areas.  

Again, simple structural analysis of the resulting 
forms is combined with both rule-based and user-led 
aesthetic evaluation but at a more complex level 
than similar evaluation relating to the previous 
bridge structures. 

Figure 9 shows evolved bench-type seating 
arrangements that are founded upon a relatively 
well-structured representation rule-base. Figure 10, 
however, utilizes a far more flexible rule-base which 
allows the evolution of more free-form seating 
arrangements that are practical, interesting and 
pleasing to the eye. Both designs have utilized the 
rule-based and user-led aesthetic evaluation 
procedures. 

2.7. Incorporating learning to reduce 
user fatigue 

The purpose of a Machine Learning Sub-system is 
the on-line assimilation of the designer’s subjective 
aesthetic preferences. This addresses a major 
problem in interactive evolutionary design systems 
relating to user fatigue caused by the evaluation of 
excessive numbers of solutions. The intention is that, 
as the generations progress, the system reduces its 
dependence on human interaction and increasingly 
produces aesthetically pleasing solutions based upon 
the assimilated user preferences. This would result 
in a reducing degree of user-interaction and, in later 
generations, a completely machine-based process 
once user preferences have been adequately learned 
by the system.  

Supervised learning taking user evaluation into 
account has been incorporated. Learning is 
attempted at two levels. Level 1 determines user 
preference for one of the three types of bridge design 
through evaluation of the relative difference between 
user assigned fitness for each type of design. Level 2 
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assesses features that the user finds pleasing across 
the different designs.   

Fig. 9: Evolved bench-type seating arrangements. 

Three machine-learning techniques have been 
implemented within the IEDS namely: Fuzzy rule 
based learning systems, Radial Basis functions 
(RBF) and Case based reasoning (CBR). Various 
authors [18, 19] point out that the learning ability of 
any algorithm is only as good as the representation 
of the information to be learned. Thus, the 
essentially pictorial design has to be represented to 
suit various machine learning techniques such as 
back propagation neural networks and fuzzy rule 
based systems. If the representation is too rich then 
the machine learning system would be overloaded 
with the instances to be learned. If the representation 
is too lean then the system could miss out small but 
important differences between designs. 

 
Fig. 10: Evolved free-form seating arrangements 

Several important conclusions have resulted from 
extensive experimentation involving the three 
approaches. Results confirm that even in the case of 
machine learning, representation plays an important 
role. Fuzzy rule based systems require the extraction 
of complex design properties which are difficult to 
define using a simple set of variables. A more 

comprehensive fuzzy model might lead to better 
results but would also lead to a loss of information 
during decomposition. The RBF approach could 
provide an ideal machine learning sub-system in an 
offline, profile based interaction but for online 
learning, using a smaller training data set, the error 
between expected and actual output is too large. 
However, the CBR approach avoids the 
representation and on-line learning problems 
associated with the other two techniques and is a 
very promising way forward. Experimentation 
shows a gradual decrease in user- interaction as 
generations progress. The reader is referred to [20] 
for more detail. Further development and 
experimentation in this area is currently underway.  

3. EVOLVING THE DESIGN SPACE 
VIA INTERACTIVE 
EVOLUTIONARY PROCESSES 

A more implicit form of interaction involves the 
extraction of high-quality information and its 
succinct presentation to the designer to support a 
better understanding of complex relationships 
between variables, objectives and constraints during 
conceptual design. This approach attempts to meld 
user experiential knowledge and intuition with 
powerful machine-based search, exploration and 
subsequent information processing. 

Initial machine-based design representations can be 
relatively basic and confidence in the fidelity of their 
output may be low. However, significant problem 
insights can be generated form their utilization 
despite apparent shortfalls. Identified high 
performance solutions based upon quantitative 
criteria followed by qualitative human evaluation 
can provide an indication of concept viability and 
degree of model fidelity. An iterative user/machine-
based process can commence where gradual 
improvements in understanding contributes to the 
development of better representations, a growing 
knowledge-base and the establishment of 
computational models that support more rigorous 
analysis i.e. a process emerges that supports the 
development of representation through knowledge 
discovery.   

An initial variable parameter set may vary in size 
and content as the sensitivity of the problem to 
various aspects becomes apparent.  Constraints may 
be treated in the same way with the added option of 
softening them to allow exploration of non-feasible 
regions. Included objectives may change as 
significant payback becomes apparent through a re-
ordering of objective preferences. Some non-
conflicting objectives may merge whilst difficulties 
relating to others may require serious re-thinking 
with regard to problem formulation.  The initial 
design space is therefore a moving feast rich in 
information [6].  

 



 Design methods for practice 124

 

The visualisation of variable and objective space 
from cluster-oriented genetic algorithm (COGA) 
output provides a variety of perspectives illustrating 
complex relationships [21]. This information is 
further defined by data mining, processing and 
visualization techniques. The intention is to support 
implicit learning and reduce complexity by 
supporting the development of an intuitional 
understanding of the problem that supports iterative 
model development. 

3.1. COGAs and the MiniCAPs  model  
Cluster Oriented Genetic Algorithms provide a 
means to identify high-performance (HP) regions of 
complex conceptual design spaces and enable the 
extraction of information from such regions [22]. 
COGAs identify HP regions through the on-line 
adaptive filtering of solutions generated by a genetic 
algorithm. COGA can be utilised to generate design 
information relating to single and multi-objective 
domains [7]. The technique has been well 
documented (see http://www.ad-comtech.co.uk/Parmee-
Publications.htm for relevant papers). 

The research utilises the BAE Systems’ MiniCAPs 
model a simplified version of a suite of preliminary 
design models for the early stages of military aircraft 
airframe design and initially developed for research 
relating to the development of the IEDS concept. 
The model comprises nine continuous input 
variables and twelve continuous output parameters 
relating to criteria such as performance, wing 
geometry, propulsion, fuel capacity, structural 
integrity etc.  

3.2. Identifying high-performance 
regions relating to differing 
objectives 

Figures 11a, b & c show HP regions comprising 
COGA generated solutions relating to three of the 
twelve MiniCAPS objectives (Ferry Range (FR), 
Attained Turn Rate (ATR1) and Specific Excess 
Power (SEP1)) projected onto a variable hyperplane 
relating to two of the nine variables utilized in the 
search process. This projection allows the designer 
to visualize the HP regions, identify their bounds 
and subsequently reduce the variable ranges as 
described in previously referenced papers.   

These papers also introduce the projection of these 
differing objective HP regions onto the same 
variable hyperplane as shown in figure 12 from 
which the degree of objective conflict immediately 
becomes apparent to the designer.  The emergence 
of a mutually inclusive region of HP solutions  

 
Fig. 11: COGA-generated high performance regions 

relating to three differing objectives: 
a) FR – Ferry Range  
b) ATR1 – Attained Turn Rate 
c) SEP1 – Specific Excess Power 

N.B.  Colour versions of figures can be found at:  
http://www.ad-comtech.co.uk/cogaplots.htm 
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relating to the ATR1 and FR objectives indicates a 
low degree of conflict whereas the HP region 
relating to SEP1 is remote (in variable space) to both 
the ATR1 and FR regions indicating a higher degree 
of conflict.   

There is much information contained in the HP 
regions relating to appropriate variable ranges for 
single objectives, degree of conflict between 
multiple objectives and the emergence and definition 
of mutually inclusive (common) HP regions. This 
graphical representation provides an excellent spatial 
indication of the degree of objective conflict. 
However, searching through all possible two 
dimensional variable hyperplanes to visualize such 
information is not a feasible approach.  Recent 
research has resulted in single graphical 
representations that can present all variable and 
objective data whilst providing links to other visual 
perspectives. The Parallel Co-ordinate Box Plot 
(PCBP) representation shown in figure 11 is one 
such graphic that provides a central repository 
containing much single and multiple-objective 
solution information. 

3.3. Parallel Co-ordinate Box Plots 
(PCBP)  

Parallel Co-ordinate representation [23] displays 
each variable dimension vertically parallel to each 
other.  Points corresponding to a solution’s value of 
that variable can then be plotted on each vertical 
variable axis. It is thus possible to show the 
distribution of solutions in all variable dimensions 
and the correlation between different dimensions.  In 
order to allow the clear representation of several 
objectives three modifications to the standard 
Parallel Co-ordinate representation have been 
introduced [21]: 
 
i) Additional vertical axes for each variable so that 
each objective can be represented. 

 
Fig. 12: All HP regions projected onto the GWPA 

(Gross Wing Plan Area)/WAR (Wing Aspect 
Ratio) variable hyperplane. 

 

ii) An indication of the degree of HP region solution 
cover across each variable range.  

iii) The introduction of Box Plots to indicate 
skewness of solutions across each variable range. 

 
Fig. 13: Parallel Box Plot of solution distribution of 

each objective across each variable 
dimension 

This Parallel Co-ordinate Box Plot (PCBP - figure 
13) provides a succinct and clear graphical 
indication of the relationships between particular 
variables and included objectives. The vertical axis 
of each variable is scaled between the minimum and 
maximum value of that variable in the HP region 
solutions of each objective i.e. the length of the axis 
represents the normalized ranges of variable values 
present in a HP region. Where a HP solution set does 
not fully extend across the variable range the axis is 
terminated by a whisker at the maximum or 
minimum value of the variable.  The colour-coded 
box plots relate to each objective (i.e. SEP1, ATR1 
and FR).  The median is marked within the box and 
the box extends between the lower and upper 
quartile values within the variable set. The Box Plots 
clearly visualize the degree of skewness of solution 
distribution relating to each objective in each 
variable dimension which provides an indication of 
the degree of conflict between objectives.  

 
Fig. 14: Projection of results onto variable 1 / 

variable 2 hyperplane for attained turn rate 
(ATR) objective. 
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For instance, it is apparent that all three objective 
boxes overlap in the case of variables 1, 2, 3, 6 and 
9. However, significant differences in the 
distribution of the boxes are evident in terms of at 
least one objective where variables 4, 5, 7, and 8 are 
concerned.  Variables 4 and 5 are Gross Wing Plan 
Area and Wing Aspect Ratio.  The conflict between 
SEP1 and FR / ATR1 evident in figure 12 is strongly 
reflected in the HP solution distribution indicated by 
the whisker truncation of variable 4 in figure 13 and 
in the box plots of that variable.  In terms of variable 
5 the whisker terminations relating to ATR1 and FR 
in figure 13 reflect the extent of the solution 
distribution across their HP regions in figure 12.  
The box plots also reflect the relative distribution of 
HP solutions of all objectives along that variable 
plane as illustrated in figure 12.  Figure 14 shows a 
projection of the ATR1 HP region onto the Cruise 
Height (variable 1) and Climb Mach No (variable 2) 
hyperplane. The relatively uniform distribution of 
HP solutions across the hyperplane is reflected in the 
appropriate variable plots of figure 13 i.e. the 
majority of the variable axes fully extend across the 
variable range and the Box Plots are relatively well 
aligned when compared to variables 4 and 5. 

The PCBP graphic therefore represents a ‘one-stop 
shop’ from which the designer can select which two 
dimensional hyperplanes they wish to view to better 
appreciate the spatial relationship between 
objectives. This also highlights which variables are 
causing high degrees of objective conflict. Further 
reinforcement can be obtained from the perspectives 
explored in the following section relating to 
projections of HP solutions upon objective space. 
Improved understanding can lead to developments 
of the computational design representation and to 
appropriate setting of objective preferences. 

3.4. Projection of COGA output on to 
objective space 

The HP region solutions for ATR1 and FR can be 
projected onto objective space as shown in figure 15.  
A relationship between the HP region solutions and 
a Pareto frontier emerges along the outer edge of the 
plot [21] despite the fact that the working principle 
of COGA does not include the non-dominance 
aspects of other evolutionary multi-objective 
algorithms [24]. Using a standard multi-objective 
GA (MOGA) it is possible to populate a Pareto front 
but difficult to explore the relationship between 
variable and objective space. It is also very likely 
that the designer is interested in high-performance 
solutions that lie close to particular sections of the 
Pareto front. For comparative purposes, figure 16 
illustrates the distribution of COGA output and  
SPEA-II [25] Pareto front output in objective space.  

It is apparent that the COGA approach provides a 
good visual indication of the degree of conflict 
between objectives; an opportunity to explore 
varying objective preferences and view their effect 
upon HP region bounds and the ability to generate 

an approximate Pareto front relating to the 
objectives under investigation whilst also providing 
extensive information re other HP solutions close to 
the front. A direct mapping is also available from 
variable space to objective space and vice versa. 

 

Fig. 15: Distribution of FR and ATR1 solutions in 
objective space 

This is in addition to the utility of COGA in single 
objective space as described in previous referenced 
papers.  

 
Fig. 16: Distribution of ATR1 and FR solutions 

against SPEA-II Pareto front. 

3.5. Summary and conclusions 
The aesthetics work reveals a significant potential in 
terms of the development of systems that include 
criteria ranging from purely quantitative through to 
purely subjective.  Ultimately the system will be 
required to give a comparative indication in terms of 
aesthetically pleasing design and likely cost whilst 
indicating structural feasibility.   

The developing system should be seen as a generic 
framework for the integration of user-evaluation 
with any preliminary design/decision-making 
domain. The CARA-EP representation concept 
should be portable across many problem domains. 
The integration of user preference and user-varied 
objective weights supports the transfer of subjective 
evaluation from the user to a design / decision-
making system. The machine learning work is 
showing considerable promise in terms of 
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overcoming the ‘user fatigue’ problem which is, 
perhaps, the major stumbling block in the 
development of successful systems. Any system 
must significantly decrease the load on the user as 
early as possible in the evolutionary process.  

It is apparent from previous research and the 
research presented here that COGA generated data 
can provide visual representations in variable space 
of the degree of conflict between objectives and 
excellent spatial indications of the distribution of 
high-performance solution regions relating to a 
number of objectives.  It is also apparent that the 
COGA HP solution sets, when projected onto 
objective space provide the designer with an 
opportunity to explore a wealth of HP solutions that 
offer varying degrees of objective compromise and a 
variety of design characteristics. The non-dominance 
sorting of these solutions also provides an 
approximate Pareto frontier illustrating succinct 
available trade-offs. The direct mapping of solutions 
between objective and variable space facilitates an 
understanding of the relative utility of solutions in 
terms of preferred variable ranges and particular 
design characteristics. 

The PCBP of figure 13 offers a first point of call for 
the designer to get an overview of the varied 
information available from COGA output.  The 
intention is that the COGA graphical perspectives 
will be available through simple menu / clicking 
operations from the central PCBP image.  These 
differing perspectives are seen as essential aids to 
understanding overall complexities relating to the 
two dependant design spaces (Variable vs Objective 
space). 

There is a wealth of information available from 
COGA output relating to single objective solutions 
that is also inherent within the multi-objective 
output.  Hence the utility of the approach should be 
assessed across both areas. The information 
available from single objective HP regions has been 
fully discussed in previous referenced papers. 

We have previously attempted to position this 
research in terms of cognitive science based upon 
our current understanding of the field. The reader is 
referred to [21] which also provides more detail re 
the research described in this section. It is apparent 
that further human-centric work requires input from 
the cognitive science and human factors areas. The 
recent activities of the research Cluster: ‘Discovery 
in Design: People-centred Computational Issues’ has 
addressed these areas to some extent. The Cluster 
was funded under the AHRC/EPSRC ‘Designing for 
the 21st Century’ Initiative. An Institute for People-
centred Computation involving the Universities of 
West of England, Cambridge, Cardiff, Bristol and 
Newport has now been established to continue the 
Cluster work. The Institute’s activities are currently 
supported by EPSRC Network funding. Details of 
the Institute and Cluster activities can be found at 
http://www.IP-CC.org.uk. Membership is open to 
all. 

User-centric techniques described in the chapter and 
variations of them are also currently being applied in 
the conceptual design of submersible vehicles [26] 
pharmaceutical drug design and discovery [27] and 
conceptual software design [28].  
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