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1   Introduction 
Successful products and systems are increasingly “mechatronic products and systems”, 
which can be seen as “smart” or “intelligent” combinations of components coming from differ-
ent domains: mechanics, hydraulics/pneumatics, electrics/electronics and information pro-
cessing. This certainly has an influence on the product/system development process, the 
methods and tools used in the process, and their basic models (see e.g. [VDI-2206]). 
One aspect that is increasingly important in mechatronics is the simulation of the system be-
haviour in non-steady states (“dynamic simulation”): Simulation has to be based on models 
that span different domains, has to be applicable already in early stages of product and 
system development and, ideally, has to accompany the entire development process with 
models / model complexity “growing” as part of the process.  
However, it is the mechanical components (“machine elements”) that are difficult to integrate, 
because their dynamic behaviour is by tradition only considered in the late stages of the 
development process, and usually by means of physical/layout models opposed abstract/ 
formal/behaviour-oriented models that are used in other domains.  
This paper shows how models and procedures known from electrical and control engineering 
also apply to mechanical components in order to get the following advantages:  
• unified modelling that connects different domains 
• applicable in early phases of product and system development 
• with regard to their complexity, models can easily be expanded throughout the entire 

process of development 
• in some aspects the dynamic system behaviour of (mechanical) components themsel-

ves can be explained a lot easier than by using conventional analysis methods 
Our starting point is the so-called multi-port theory. Based on this theory, corresponding 
basic principles and rules necessary to create simulation models will be described and ex-
plained by means of a guiding example (toothed gear pair).  
Parts of the basic concepts presented in this contribution were already published by the au-
thor many years ago [Weber-83, Weber-86, Weber-91]. At that time, when the term “mecha-
tronics” was still unknown, applications were limited. Apart from that, tools for the computer-
aided evaluation of (differential) equation systems were practically non-existent. In 2004 the 
author updated the results and extended them, putting them in the context of the dynamic 
behaviour of mechatronic systems. In another publication earlier this year, [Weber-05] the 
topic was covered with some more examples, partly from non-mechanical domains. Addition-
ally, the considerations presented here are part of the author’s teaching activities in machine 
elements since 2004, which in general follow a very similar scheme as the one described 
and proposed by Eder (e.g. [Eder-05a]). 



Before going into any details, it should be stressed that model-building with regard to the 
analysis/simulation of the dynamic behaviour is only one particular aspect of a much more 
general new view on mechanical components (machine elements): As is pointed out by Eder 
in [Eder-04, Eder-05a] and further developed in a contribution to the same AEDS 2005 con-
ference [Eder-05b], machine elements, while having been explained in engineering educa-
tion and having been successfully used in engineering practice for many decades, still show 
a “general lack of a systematic classification”. Like Eder, also the author of this contribution is 
convinced that a systematic approach along the lines of design science or design theory and 
methodology (e.g. [Hubka/Eder-92, Hubka/Eder-96, Pahl/Beitz-83, Pahl/Beitz-96, VDI-2221]) 
would have ample benefits both in education and in practice, and even more so when the 
perspective is opened from a primarily mechanical view in the past to a “mechatronic view” in 
the future.  
In principle, the author’s ideas are very similar to Eder’s concepts, but can not be presented 
in detail here.  
 

2   Machine elements as transmitters of mechanical power 
Machine elements can be seen as known and proven, often standardised solution elements 
(assemblies, components, parts of components) that realise frequently required functions 
within mechanical products [Weber/Vajna-97]. Their functioning is based on certain physical 
principles (mainly from the mechanical domain, but also from other domains such as hydraul-
ics and thermodynamics), sometimes in complex combinations.  
In this context it is important that machine elements can also be understood as solution 
elements that transmit mechanical power, i.e. that transmit forces and motions. In this gener-
al sense machine elements are the constitutive components of more complex systems trans-
mitting mechanical power, having one or more power inputs (connected to “primary movers”, 
“sources of mechanical power”) and one or more outputs (connected to “loads”, “consumers/ 
drains of mechanical power”). The term “mechanical power”, however, has to be further de-
composed into its two basic values: force and velocity in the translational case and torque 
and angular velocity in the rotational case, respectively. Only on the level of these basic val-
ues the functions especially of machine elements can be properly described.  
In the most simple case there is just one input and one output, leading to the block diagram 
according to figure 1. 

 
Figure 1. Machine elements as constituents of systems transmitting mechanical power 

(here: rotational); most simple case illustrated: two external connections (“ports”, “shafts”);  
one static and one kinematic degree of freedom 

 
Using figure 1, some significant aspects can be explained: 
• When you look at the block diagram, bearing in mind the context of the entire system, at 

every external port of a mechanical system (“shaft” or other “interface” to transmit mech-
anical power into or out of the system) only one of the two values – force/torque or mo-
tion – can be assigned, i.e. can be independent input in a logical/functional sense. The 
other value – again in logical/functional sense – is fed back as a result of the behaviour 
of the neighbouring system connected to that port, i.e. is output value.  



• These findings are not at all new, they rather correspond to rules known in mechanism 
and transmission technology, but expressed in different terms: A mechanism has as 
many degrees of freedom as it has external ports (shafts or other interfaces), at every 
external port exactly one degree of freedom is assigned [Müller-98]. Depending on 
whether force/torque or motion is assigned, you can differentiate between a “static” or 
“kinematic” degree of freedom. 

• How many of the total number of degrees of freedom of a system are static and how 
many kinematic depends on the structure of the transmission system itself. 

• The case shown in figure 1 occurs very often: Here the transmission system (with two 
external ports in total) has one static and one kinematic degree of freedom, so it could 
be every kind of (gear) wheel transmission or belt drive without slip.  

• In the field of machine elements forces and motions are not always considered at the 
same time: Mechanism technology often concentrates mainly on motions (purely kine-
matic view); in other cases (e.g. connecting elements like bolt, rivet, weld connections), 
motions are usually not considered. These are two special cases which are part of the 
general model according to figure 1: The focus is completely on kinematics if all input 
forces are zero (or assumed close to zero), while the purely static case occurs when all 
input motions are (regarded) zero.  

 

3   Basic principles of the four-pole / multi-pole theory 

3.1 Basic model and basic equations 
Multi-poles are a modelling concept that is well-known in the field of electrical and control en-
gineering, but also in acoustics (looked upon as a coupled electro-mechanical domain). They 
help to describe the dynamic behaviour of systems that transmit power [Oppelt-72].  
The elementary model is the four-pole (sometimes called “quadrupole”), figure 2: 
• A four-pole has two external connections (called “ports”), where power can be transport-

ed into or out of the system. In the electrical domain these are usually called “terminals”, 
in (rotational) mechanics we would call them “shafts”. 

• Two physical values are assigned to each one of the two external ports: the so-called 
“effort value” or “effort variable” and the “flow value/variable”. Thus, a system having two 
ports has in total four external inputs and outputs or “poles”, which gives the four-pole its 
name. 

• The multiplication of the corresponding effort and the flow variables gives the power that 
is transmitted at the respective port. 

 

 

 

 

 

 

 

Figure 2. Basic model  
“two-port” / “four-pole” 

 
 
 



For different domains of physics (mechanical, electrical, hydraulic), different physical values 
being effort and flow variables can be identified, table 1. With regard to mechanical power it 
should be noted that in this contribution “force/torque” is introduced as “effort” with “velocity/ 
angular velocity” being “flow”. It would also be possible (and would be even more correct in a 
physical sense) to see “force/torque = change in (angular) momentum” as the flow variable 
and (angular) velocity as the effort variable. The distinction between the two approaches is 
very interesting in theory; for further discussions on simulation models for machine elements 
as the focus of this paper, it is, however, of minor importance and will not be discussed any 
further.  

Table 1. Effort and flow variables of different types of power 

 effort-, flow 
variable power work 

mechanical/ 
translational F, v 

dt
dsFvFP tr,mech ⋅=⋅=  ∫∫ ⋅=⋅⋅= dsFdtvFW tr,mech  

mechanical/ 
rotational M, ω 

dt
dFMP rot,mech
ϕ

⋅=ω⋅= ∫∫ ϕ⋅=⋅ω⋅= dMdtMW rot,mech

electrical ∆U, I 
dt
dQUIUPelektr ⋅∆=⋅∆=  ∫∫ ⋅∆=⋅⋅∆= dQUdtIUWelektr  

hydraulic ∆p, V&  dt
dVpVpPhydr ⋅∆=⋅∆= &  ∫∫ ⋅∆=⋅⋅∆= dVpdtVpWhydr

&  

alternative: ⎟
⎠

⎞
⎜
⎝

⎛
ρ
∆p , m&  

dt
dmpmpPhydr ⋅

ρ
∆

=⋅
ρ
∆

= & ∫∫ ⋅
ρ
∆

=⋅⋅
ρ
∆

= dmpdtmpWhydr &

thermal ∆T, S&  
dt
dSTSTPtherm ⋅∆=⋅∆= & ∫∫ ⋅∆=⋅⋅∆= dSTdtSTWtherm

&

 
In a logical/functional sense only one of the two physical values can be input with regard to 
every external port (i.e. can be determined by the neighbouring external system connected to 
that port, X), the other one is output (i.e. is impressed onto the system connected to that port, 
Y). Whether, in a particular case, at a particular port flow or effort is input depends on the 
structure of the transmission system as well as on how it is integrated into the whole system 
environment. 
In the field of electrical, control and acoustic engineering it is common practice to assume on-
ly linear behaviour, i.e. linear equations that connect the system’s external and internal val-
ues. The linear four-pole defined in this way has the generic structure illustrated in figure 3. 

 
Figure 3. Generic structure of a linear four-pole 

 
It is worth mentioning that the structure shown in figure 
3 as well as all other block diagrams discussed in this 
paper differ from figures normally used in control engin-
eering in one point: The summation/superposition of val-
ues is indicated by a rectangular box with the symbol 
“Σ” in it and not – as in the field of control engineering – 
by means of a small circle and a “plus” sign (“ ”). This 
is done to avoid confusion with “branching-off points” 
where a value is distributed to several branches without 
changing its quantity (see discussion in section 4.2). 
 

 



The system behaviour (transfer of input to output values) of the generic linear four-pole ac-
cording to figure 3 can be described as:  

2121111 XkXkY ⋅+⋅=  (1) 

2221212 XkXkY ⋅+⋅=  (2) 

Hence as a matrix: 
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The assumption of linearity is no strict necessity, it is just common practice in other domains 
in which the four-pole approach is widely used. When considering non-linear cases, in equa-
tions (1) and (2) the linear mathematical functions with their constants kij have to be replaced 
by general functions of the form fij(Xj) – principally any function appropriate to describe the 
respective physical effect is possible: polynomials, trigonometric functions, …. However, in 
this case a matrix form according to equation (3) is not applicable anymore, since matrices 
can only capture linear relations.  
In the field of mechanical systems non-linear relations are needed quite often. One example 
is the description of sliding friction effects – the Coulomb-type “dry” friction as well as the 
Newton-type “fluid” friction effect. Here is no space to start a detailed theoretical discussion 
of the non-linear case; in this paper non-linear considerations will be taken up again “ad hoc”, 
where appropriate. However, since matrix representations as shown in equation (3) are 
strictly confined to the linear case, they are not used any longer in this paper.  
 

3.2 Mechanical four-poles 
Starting from figure 3, a general four-pole becomes a mechanical four-pole if the generalised 
input and output values (Xi, Yj) are defined as mechanical inputs and outputs, i.e. forces and 
velocities (translational case) or torques and angular velocities (rotational case).  
The mechanical system illustrated in figure 1 – transmitting rotational mechanical power with 
just two external power ports (“shafts”) and one static and one kinematic degree of freedom – 
turns into the mechanical four-pole shown in figure 4, provided that the transfer function is 
again (assumed) linear.  
 

Figure 4. Structure of a linear mechanical four-pole 
(here: transmission of rotational mechanical power) 

 
In all diagrams of mechanical systems where an effort 
value (force or torque) is output in a logical/functional 
sense (see M2 in figure 4), a minus symbol will be ad-
ded in order to reverse the sign. This ensures that all 
equations derived from the respective four-pole struct-
ures automatically deliver “physically correct” signs:  
• By convention, in mechanical analyses the “cor-

rect” directions of all force values are defined in 
such a way that the effects of neighbouring systems onto the analysed system are con-
sidered (thus, the analysed system will always present itself in a state of equilibrium of 
forces).  

• When it comes to system simulation, this could also be done completely different, i.e. by 
defining all force values in such a way that the effects from the logical/functional origins 
onto the next neighbouring systems are captured (i.e. considering forces “along the di-
rections of the arrows”). As a result you would also get coherent descriptions of the 



system behaviour; however, all force values that are logical/functional outputs would 
have reversed signs compared to the standard case. 

Bearing in mind this rule of signs of output effort values, instead of the general equations (1) 
and (2), you get the following specific equations as descriptions of the system behaviour of 
the (linear) mechanical four-pole according to figure 4 (rotational case). The presentation in 
form of a matrix as in equation (3) is left out for the reasons mentioned above.  

2121111 kMk ω⋅+⋅=ω  (4) 

2221212 kMk)M( ω⋅+⋅=−  (5) 

 

3.3 Four-poles without power losses (with non-dissipative behaviour) 
By using four-pole models like the ones shown in figures 3 and 4, some general questions 
with regard to the behaviour of the described systems can be discussed on a quite formal 
level, i.e. without having to go into physical or even layout details.  
One of the most interesting questions is: Which are conditions where the system has a be-
haviour free of power losses? This shall be investigated for all operating conditions, i.e. for all 
possible input values (X1, X2) or, in the mechanical case according to figure 4, (M1, ω2).  
In the mechanical case powers P1 and P2 can be calculated as follows: 

)kMk(MMP 2121111111 ω⋅+⋅⋅=ω⋅=  (6) 

2222121222 )kMk(MP ω⋅ω⋅+⋅−=ω⋅=  (7) 

No power losses / no dissipation means:  

0kM)kk(MkPP 2
222212112

2
11121 =ω⋅−ω⋅⋅−+⋅=+  (8) 

If we want equation (8) to be valid for all possible input values (M1, ω2), then the following 
conditions must be fulfilled: 

0kk 2211 ==  (9) 

( ) 0kk 2112 =−  (10) 

Interestingly enough, the two conditions (9) and (10) immediately lead to conclusions about 
the “allowed” inner structure of (linear) four-poles and, subsequently, about the necessary 
structure of corresponding real systems: As a general rule, dissipation-free power transmit-
ting systems have to have two separate structural branches to transfer input values into out-
put values. Figure 5 illustrates this finding for the mechanical four-pole according to figure 4:  
 

 

Figure 5. Structure of a linear mechanical four-pole 
(rotational case), having no power losses in all 
operating conditions 

 



Some interesting further conclusions can be drawn from the discussion about non-dissipative 
behaviour of power transmissions:  
• Power transmission with good efficiency ratio throughout the whole operating range is 

not a quality influenced primarily by physics, but rather influenced by the inner structure 
of the system. 

• Many machine elements are, in fact, constructed in a way that follows the ideal structure 
illustrated in figure 5: All positive locking gear trains and clutches transmit forces/torques 
decoupled from motions, consequently the “static” and “kinematic” aspects can be con-
sidered separately.  

• The same is true vice versa: In all cases in which power losses occur (or are even part 
of the required system behaviour: e.g. clutches and gears in the state of slip, brakes), 
the static values are not decoupled from the kinematic values. This will be further exam-
ined in the following chapter 4.  

 

3.4 Catenation of four-pole models 
Four-pole models can be easily combined (catenated) to build models of more complex sys-
tems, figure 6, top. However, you have to consider that even in the completely linear case 
the overall mathematical transfer function can not simply be calculated by multiplying the 
matrices (see equation (3)) of the catenated four-poles. The reason is that the two logical/ 
functional output values of each elementary four-pole as well as the overall output values of 
the whole system (in general: (Y1, Y2); in the case of the mechanical [rotational] four-pole: 
(ω1, M2)) belong to different external ports (external “shafts” in the case of rotational mech-
anical power).  
Instead, the overall transfer functions are found out by means of “calculating backwards”: 
Start from the output values (that are connected to different ports!), follow them up across all 
the different inner elements of the structure, until the input values (that are also connected to 
different ports) are reached, see figure 6, bottom. 
Only a “mathematical trick” (and a quite complicated one, at that) could describe the catena-
tion by means of a multiplication of the matrices of the partial systems: 1 – transform all cate-
nated four-pole models into substitute models in which both values at every port have the 
same logical/functional direction; 2 – multiply the substitute matrices; c – re-transform the re-
sult back to a state with one input and one output at each port afterwards. This procedure 
was already discussed in [Feldmann-71] for hydraulic and hydro-mechanical systems, but 
can be applied generally. It will not be described here in detail.  
 

3.5 Multi-pole models 
“Two-ports” or rather “four-poles”, which describe systems with two external power ports, can 
be extended to so-called “multi-ports” (sometimes called “n-poles”) by adding further external 
ports (more than two external “shafts”, “terminals”, …). A gearbox that has three external 
shafts is, for instance, a “three-port” or a “six-pole” (three external shafts ⇒ six external input 
and output values in total, three each static and kinematic). For multi-poles similar structures, 
rules and relations apply as for elementary four-poles. This will not be discussed here in 
further detail. In [Weber-05] the multi-pole model of an epicyclic gear system is explained as 
an example. 



 

 

 

Figure 6. Catenation of four-pole models and determining the overall mathematical transfer 
function (scheme, shown for the example of transfer of rotational mechanical power) 

 

4   Element types of multi-pole models 
In multi-pole models (as in all other similar models, see [Wellstead-79, Breedveld-84, Kar-
nopp et al-00]) there can only occur three basic types of elements, which will be introduced 
and explained in this section. 
 

4.1 Ideal transfer elements 
Ideal transfer elements have the structure of a non-dissipative four-pole, i.e. a four-pole 
made up of two separate branches (see figure 5, right). When we talk about a mechanical 
four-pole – particularly one that transmits rotational mechanical power – under the conditions 
that one branch connects the effort variables while the second (separate) one “transports” 
the flow variables and if we keep up the assumption of linear transfer characteristics you get 
the model shown in figure 7. 
 

 
Figure 7. Ideal transfer element (here: transmission 
of rotational mechanical power, linear characteristic) 

 
 
 
 



In systems theory, elements of this kind are called “ideal transformers” or shortly “TF-ele-
ments”. Examples in the mechanical domain – here with connected input and output values 
of the same type (as in figure 7: torque connected to torque and angular velocity to angular 
velocity) – are all non-dissipative translators of forces (e.g. levers) which at the same time 
are always motion translators, as well as all positive gear trains which also transmit forces/ 
torques and (angular) motions simultaneously but separately.  
If values out of different physical domains are connected, but still under the condition that ef-
fort is connected to effort and flow to flow, then in systems theory the term “ideal transducer” 
is used. Examples from the mechanical domain are all transformers of rotational to transla-
tional values (e.g. pulleys, rack and pinion gears) as long as we assume them to be non-dis-
sipative. Beyond mechanics, hydrostatic pumps and motors are examples for ideal trans-
ducers, again if assumed free of power losses.  
Since the system behaviour is non-dissipative, ideal transfer elements are also called 
“power-conserving two-ports”.  
Apart from transformers and transducers, however, there is another category of ideal transfer 
elements, the so-called gyrators (“GY-elements”). They also have two completely decoupled 
strucural branches; these branches connect, however, the effort value of one port with the 
flow value of the other port or vice versa. Figure 8 displays one of two possible gyrator 
structures in the field of mechanics.  
 
 

Figure 8. Four-pole model of a mechanical gyrator  
(here: transmission of rotational mechanical power,  

linear characteristic;  
one of two alternatives shown as an example) 

 
 
While gyrators play an important role in electrical engineering, they are rarely found in the 
mechanical domain: gyroscopes are the only example for mechanical gyrators (at the same 
time giving this special element type its name). For this reason this category of ideal transfer 
elements is not discussed here in further detail.  
According to figure 7 you get the following equations when describing the system behaviour 
of ideal (mechanical) transfer elements in the linear case: 

( ) 12 MkM ⋅=−  (11) 

21 k ω⋅=ω  (12) 

It is important to mention (again) that a linear transfer behaviour is only a special, albeit often 
used case and that also non-linear relations can occur quite frequently (e.g. polynomials, 
even trigonometric functions). 
 

4.2 Junction elements 
Junction elements are used to model connections of more than two ports (e.g. connecting 
more than two “shafts” in the case of transmitting rotational mechanical power). In the ele-
mentary case, exactly three ports are coupled without additional changes of the transmitted 
values. For this kind of elementary “three-ports” or “six-poles” there are exactly two alterna-
tive concepts: 

a. summation/superposition of flow variables, accompanied by identical effort variables 
b. summation/superposition of effort variables, accompanied by identical flow variables 

Figure 9 shows on the left and right side the corresponding block diagrams of the elemen-
tary junction element types according to concepts a and b, respectively. Again, the case of 
transmitting (rotational) mechanical power is specified here as an example, other cases are 



analogous. The summation/superposition of values in one branch of the structure (illustrated 
by a rectangular box with the symbol “Σ”) is connected inseparably to the coupling of three 
identical values in the other branch of the structure; this is displayed in the block diagrams by 
a “branching-off point” in form of a filled node. It is very important to avoid confusion between 
the “summation/superposition” part and the “branching-off” part of junction elements; there-
fore, the author introduces here the notation displayed in figure 9 which differs slightly from 
the usual notation in control engineering.  
 

 
Figure 9. The two possible variants of junction 
elements (here: transmission of rotational 
mechanical power):  
a.  summation/superposition of flow variables,  
  accompanied by identical effort variables;  
b.  summation/superposition of effort variables,  
  accompanied by identical flow variables 

 
 
 
 

The summation/superposition of the three values in one branch of both types of junction ele-
ments requires that two of them have to be logical/functional inputs (have to be assigned by 
neighbouring elements or systems); otherwise, the sum can not be evaluated. Accordingly, 
the coupling of three identical values in the other branch of the respective junction element 
requires only one of them to be input (to be defined from outside the element). 
Therefore, the junction element according to concept a (figure 9a) has in the mechanical 
case only one static but two kinematical degrees of freedom (i.e. one force/torque but two 
motions have to be assigned by neighbouring elements or systems). In contrast to that the 
junction element according to concept b (Figure 9b) requires two static but only one kinemat-
ic degrees of freedom (i.e. two force/torque values but only one motion have to be specified 
by the external connected elements or systems).  
The mutual dependence of the outputs on the inputs can be mathematically expressed in the 
following way1: 

a. BCA MM)M( ==−   (13) 

 and 
 BAC ω−ω=ω  (14) 

b. BAC MM)M( +=−  (15) 

 and 
 CBA ω=ω=ω  (16) 

Examples for junction elements according to concept a (Figure 9a) from the mechanical do-
main are the relative movement of two bodies with (identical) contact force, in electronics and 
hydraulics it is the parallel connection of three electrical/hydraulic units. 

                                                           
1 Note on signs: In the block diagrams in figure 9 as well as in equations (13) to (16) the signs are cho-
sen according to the sign rules for forces as logical/functional output values of mechanical systems 
which were explained in chapter 3. In the case of the junction element according to concept a (figure 
9a) this requires an additional reversion of one sign, marked by.” ”. 

a b 



A mechanical example for junction elements according to concept b (Figure 9b) is the sum of 
all forces/torques acting on a moving (rigid) body. In electronics and hydraulics it is the series 
connection of three electrical/hydraulic units.  
Both junction element types in Figure 9 are “power-conserving”. This is not a surprising fact 
as they have – like the ideal transfer elements treated in section 4.1 – a structure with two 
completely decoupled branches.  
In systems theory, the junction element according to concept a (Figure 9a) is also called a “0-
junction”, the junction element according to concept b (Figure 9b) is a "1-junction". These de-
nominations result from another modelling method that is not described in this paper, namely 
that of Bond graphs [Wellstead-79, Karnopp et al-00]. This topic will not be explored in 
further detail here. 
Finally, please note that the junction elements explained here have already been implicitly 
used in the elementary four-pole models in figures 3 and 4 in order to add up the influences 
of both inputs on the outputs. 
 

4.3 “Cross-coupling elements” 
In this contribution the term “cross-coupling elements” denotes structural elements in four-
pole/multi-pole models which directly connect interrelated effort and flow values (in the mech-
anical case: force/torque directly coupled to motion). As already discussed in section 3.3 
these elements have a special significance as they cause (at least temporary) power losses.  
There are three different types of “cross-coupling elements” which differ from each other as 
they connect effort values with flow values of different temporal derivations. In the mechani-
cal case these are the following possible “cross-couplings”: 
a. Coupling acceleration/angular acceleration (the derivation of velocity/angular velocity 

with respect to time) to force/torque: inertia-induced force/torque (“masses and fly-
wheels”) 

b. Coupling velocity/angular velocity directly to force/torque: resistance-induced force/ 
torque (“friction and damping elements”) 

c. Coupling displacement/angular displacement (the integration of velocity/angular velocity 
with respect to time) to force/torque: elasticity-induced force/torque (“springs”) 

These three types of “cross-coupling elements” will be explained in the next sub-sections in 
terms of four-pole structures and equations. 
 

Elements describing inertia effects 
Figure 10 shows sketches as well as related four-pole diagrams for (mechanical) “cross-
coupling elements” of the type a (coupling acceleration/angular acceleration to force/ torque), 
with the translational case in the left and the rotational case in the right column of the figure2. 
In principle, in the translational case an acceleration (= derivation of velocity with respect to 
time) via the inertia causes a force difference (∆Fp); accordingly, in the rotational case an 
angular acceleration (= derivation of angular velocity with respect to time) via the moment of 
inertia causes a torque difference (∆Mp). Depending on the sign of the (angular) acceleration 
this difference is either positive or negative. If the (angular) acceleration equals zero the in-
ertial force/torque also is zero.  
If the (angular) acceleration does not equal zero and, consequently, the force/torque differ-
ence is also non-zero, then the powers carried at the external ports of the element (transla-
tional case: P1 = F1·v1 and P2 = F2·v2; rotational case: P1 = M1·ω1 and P2 = M2·ω2) don’t sum 
up to zero anymore: The element has – depending on either a minus or plus sign of the dif-
ference of power – temporary power losses or power gains.  
In terms of energy balances, this can be explained by a certain amount of the input power 
being (temporarily) used to increase or decrease the kinetic energy stored in the element. 
                                                           
2 In the block diagrams in Figure 10 as well as in all following diagrams the signs are chosen accord-
ing to the sign rules for force values as outputs of mechanical systems, as explained in chapter 3. 



Thermodynamically, this is a reversible process (see corresponding arrows in the block dia-
grams: because of reversibility on the conversion both directions possible). 
 

Translational Rotational 
Sketch: 

 

 

Sketch: 

 
Block diagrams (two versions): 

       

Block diagrams (two versions): 

       

Figure 10. “Cross-coupling element” acceleration / angular acceleration ↔ force / torque 

 
Both for the translational and the rotational case, there are two versions of four-pole block 
diagrams displayed in figure 10; they describe two different operating modes that result from 
the integration of the “cross-coupling element” discussed here into the neighbouring system 
environment:  
• In the first version (displayed left in the two columns of figure 10) the (angular) velocity 

state (in general terms: the flow variable) is impressed on the element by one of the ex-
ternal neighbouring elements or systems. If the motion state changes in time, then the 
inertia induces a (positive or negative) force/torque difference between input and output 
on the side of the effort variables.  

• In the second version (displayed right in the two columns of figure 10) at both external 
ports of the element the forces or torques, respectively, are determined by the neigh-
bours. Then, if there is a non-zero difference between the two external forces/torques 
(∆Fp or ∆Mp, respectively), due to the effects of inertia this will be converted into an (an-
gular) acceleration or deceleration, i.e. a change of the velocity state of the element 
which, in turn, is impressed on the connected neighbouring systems. In this version the 
internal logical/functional flow inside the “cross-coupling element” is reversed compared 
to the first version. Therefore, what was a derivation element ( dt/d ) has now to become 
an integration element ( ∫ dt... ).  

The behaviour (transfer of input to output values) of the “cross-coupling element” shown in 
figure 10 can be described by the following equations (only version one of the two operating 
options noted):  
 
 



Translational: 

( ) ( )211p12 vm
dt
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Rotational: 
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The equations for the real-world “cross-coupling elements” are in the field of traditional (non-
relativistic) physics always linear.  
However, in special cases the inertia or moment of inertia can vary during operation (e.g. in 
vehicles that loose weight due to the consumption of carried fuel). Therefore, the correct 
placement of the derivation element ( dt/d ) in the structures is behind the element which re-
presents inertia or moment of inertia, respectively. Or to express it in a physical way: The 
force/torque difference (∆Fp or ∆Mp, respectively) is in fact the result of change in the (angu-
lar) momentum rather than the result of a change of the (angular) velocity.  
In systems theory, “cross-coupling elements” of the type displayed in figure 10 are called  
"I-Elements" (“inertia” or “induction” elements). They are in the general case (in non-steady-
state, “dynamic” conditions) not “power-conserving”, but still “energy-conserving”.  
In terms of the structure, please note that the inner part of the “cross-coupling element” dis-
played in figure 10 and also of all other types of “cross-coupling” elements that will be ex-
plained in the following sub-sections are in systems theory occasionally known as “one-ports” 
or “two-poles”. However, they can not exist alone; in fact, they have to be connected with ac-
cessible external ports by means of junction elements (in this case according to type b ex-
plained in section 4.2) so that the complete structure is again a “two-port” or “four-pole”.  
For “cross-coupling elements” according to figure 10 there is a special case which has some 
importance especially in mechanics: This is a “mass-less” or “inertia-less” element having an 
inertia equal (or assumed equal) to zero. This special case is formally described by the con-
dition m = 0 or J = 0, respectively, and is displayed in figure 11 in form of a four-pole struc-
ture. 
 

 Translational: Rotational: 
Figure 11. Special case

“element with zero inertia”
Block diagram 

(only one version): 

 

Block diagram 
(only one version): 

 

 



Elements describing resistance effects 
Figure 12 shows sketches and related four-pole diagrams for (mechanical) “cross-coupling 
elements” of the type b (coupling directly velocity/angular velocity to force/torque). Again, the 
translational and the rotational case are displayed separately (left or right column of figure 
12, respectively). 
In principle, a difference in relative (angular) velocity between the two ports of the element 
causes a resistance force or torque which, in turn, is equally evident at both ports. 
The powers at both external ports (translational case: P1 = F1·v1 and P2 = F2·v2; rotational 
case: P1 = M1·ω1 and P2 = M2·ω2) do not sum up to zero (as long as the velocity-difference is 
non-zero), the element always has power losses. 
In terms of energy balances, this can be explained by the fact that a certain amount of the in-
put power is dissipated into thermal power which is an irreversible process (see the corres-
ponding arrows in the block diagrams: because of the conversion being irreversible only one 
direction possible). 
 

Translational: Rotational: 
Sketch: 

 

 

Sketch: 

 
Block diagrams (two versions): 

       

Block diagrams (two versions): 

       

Figure 12. “Cross-coupling element” velocity / angular velocity ↔ force / torque 

 
Again, for the translational as well as the rotational case there are two versions of four-pole 
block diagrams displayed in figure 12 describing two different operating modes that depend 
on the integration of the element into its environment:  
• In the first version (displayed left in the two columns of figure 12) at both ports the vel-

ocities are assigned by the external neighbouring systems. The difference between 
these velocities causes the resistance force or torque, respectively, (Fd, Md,) which at 
the same time affects both external ports. 

• In the second version (displayed right in the two columns of figure 12) an external force 
is impressed on the element. The only way the element can react on this is by adjusting 
the relative (angular) velocity (∆v, ∆ω), i.e. by increasing or decreasing the slip accord-
ingly.  



Again, the two versions display a reversed internal logical/functional flow inside the “cross-
coupling element”.  
For the structures shown in figure 12 the following equations can be noted (in each case for 
the first of the two operating versions) which, for reasons of simplicity, assume a linear beha-
viour of the “cross-coupling”: 
 
Translational: 

( ) ( ) ( ) ( ) ( )21d12 vvdvdFFF −⋅−=∆⋅−==−=−−  (19) 

Rotational: 

( ) ( ) ( ) ( ) ( )21d12 ddMMM ω−ω⋅−=ω∆⋅−==−=−− ϕϕ
 (20) 

Especially in the case of mechanical resistances a linear behaviour hardly occurs in reality. 
Even the most simple Coulomb (“dry”) friction, very widely used as approach to describe 
mechanical resistances, has to be described through another function (signum function). The 
so-called Newtonian (”fluid”) sliding friction has an even more complex behaviour that has to 
be described depending on precise geometry, flow and operating conditions (including, for 
example, the temperature!). Therefore, the linear dependencies given in equations (19) and 
(20) can only be seen as a theoretical special case and have to be replaced by appropriate 
non-linear mathematical relations in order to properly describe "realistic" cases. 
In contrast to mechanics, in the electrical domain we can usually describe electric resist-
ances by a linear behaviour with good approximation (Ohm’s law).  
In systems theory, “cross coupling elements” of the type displayed in figure 12 are called "R-
elements" (resistance elements). They are neither “power-conserving” nor “energy-conserv-
ing” but rather "power and energy-dissipating two-ports".  
For “cross coupling elements” according to figure 12 there is also a special case which 
sometimes is considered in mechanics: This is the "relative movement without friction” or, in 
terms of real components, the “ideal linear guide” or “ideal rotational bearing”. This special 
case is formally defined by the condition d-1 = 0 or dφ

-1 = 0, respectively; the corresponding 
four-pole structure is shown in figure 13. 
 

Translational: Rotational: 
Figure 13. Special case

“element allowing relative movements 
without resistance/friction”

Block diagram 
(only one version): 

 
(“ideal linear guide”) 

Block diagram 
(only one version): 

 
(“ideal bearing”) 

 



Elements describing elasticity effects 
Figure 14 shows the sketches and related four-pole diagrams for (mechanical) “cross-coup-
ling elements” of the type c (coupling displacement/angular displacement to force/ torque). 
As in the cases described in the previous two sub-sections, the translational and the rotation-
al cases are displayed separately (left or right column of figure 14, respectively). 
 

Translational: Rotational: 
Sketch: 

 

Sketch: 

 
Block diagrams (two versions): 

       

Block diagrams (two versions): 

           

Figure 14. “Cross-coupling element” displacement / angular displacement ↔ force / torque 

 
In principle, a force or torque impressed on an elastic body causes a deformation (= relative 
displacement or relative angular displacement, respectively). If this varies in time, then there 
is a (temporary) difference between the (angular) velocities of the two ports. The forces or 
torques at the two ports must, however, be identical for reasons of equilibrium. 
When changes of external forces/torques occur, hence also changes in the deformation 
state, and accordingly temporary differences of (angular) velocities, then the powers carried 
at the external ports of the element (translational case: P1 = F1·v1 and P2 = F2·v2; rotational 
case: P1 = M1·ω1 and P2 = M2·ω2) don’t sum up to zero: The element has – depending on 
either a minus or plus sign of the difference of power – temporary power losses or power 
gains. 
In terms of energy balances, this can be explained by a certain amount of the input power 
being (temporarily) used to increase or decrease the static energy stored in the element. 
Thermodynamically, this is a reversible process (see corresponding arrows in the block dia-
grams: because of reversibility on the conversion both directions possible). 
Again, for the translational as well as the rotational case there are two versions of four-pole 
block diagrams displayed in figure 14 describing two different operating modes that depend 
on the integration of the element into its environment:  
• In the first version (displayed left in the two columns of figure 14) the external force is 

impressed on the element (equal at both ports for reasons of equilibrium) by the 



connected external elements or systems. If the force changes in time, a change in defor-
mation and a (temporary) difference of (angular) velocities between the ports will occur. 

• In the second version (displayed right in the two columns of figure 14) the two external 
neighbouring systems will assign (temporarily) different velocities or angular velocities, 
respectively, to the two ports of the element. The only way the element can react is by 
increasing or decreasing its elastic deformation state (as long as it does not break!) 
which, in turn, results in an increase or decrease of the force/torque at the two external 
ports.  

The behaviour of the element shown in figure 14 can be expressed mathematically by the 
following equations (in each case for the first of the two operating versions), here again 
assuming a linear elastic characteristic for reasons of simplicity:  
 
Translational: 
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Rotational: 
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The equations (19) and (20) are formulated as differential equations. Especially in the case 
of elasticity, it is often useful to switch to the integral form which means that, instead of vel-
ocities, displacements are considered (integral of velocities with respect to time). The corres-
ponding equations are: 
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Rotational: 
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The values s0 or φ0 in equations (21) and (22) are constants of integration (geometric distan-
ces or angles between the two ports to which the elastic [angular] deformation is added). 
In reality, a linear element behaviour will be achieved with good approximation by approp-
riate design (e.g. “linear springs”). However, non-linear elastic effects also occur quite often  
– whether wanted or unwanted. In such cases the linear equations (19) and (21) have to be 
replaced by appropriate non-linear relations.  
In systems theory, “cross-coupling elements” of the type displayed in figure 14 are called "C-
elements" (“capacities”). Like the “I-elements” (inertias) described in the sub-section next to 
the last, also “C-elements” are not “power-conserving” but “energy-conserving”.  
Finally, also for the “cross-coupling elements” shown in Figure 14 there is a special case 
which is referred to quite often in the domain of mechanics: This is "force/torque transmission 
through a rigid body”. This special case is formally defined by the condition c-1 = 0 or cφ

-1 = 0; 
the corresponding four-pole structure is shown in figure 15. 
 
 
 



 Translational: Rotational: 
Figure 15. Special case

“rigid force/torque transmission”
Block diagram 

(only one version): 

 

Block diagram 
(only one version): 

 
 

4.4 Concluding remarks 
Based on the fundamental four-pole element types introduced in the previous sections, it is 
now possible to build up multi-pole models of machine elements (and other components and 
systems, not necessarily confined to mechanical ones). For this purpose the basic element 
types will be coupled to one another according to the structure of the real system to be mod-
elled.  
In doing so, only the element types introduced can occur. However, especially in the field of 
mechanical elements and systems in very many cases non-linear equations will have to be 
used instead of the linear ones that were used to explain the concept of four-pole modelling. 
The equations which have to be used in a particular case result from the particular physical 
effect implied and from parameters which are defined by designing the system. 
The equations to describe the (dynamic) system behaviour then result from “calculating 
backwards” through the whole system model, starting from the output values, following them 
up across all the different inner elements of the structure, until the input values are reached 
(as already shown schematically in figure 6). 
Provided that elements of differentiation and/or integration occur in the “cross-couplings” we 
will end up with differential equations or integral equations, respectively, as descriptions of 
the transfer characteristics of the whole system. 
 

5   Example “gear pair” 
This chapter is supposed to demonstrate how multi-pole block diagrams are set up and how 
the resulting (differential) equations describing the (dynamic) system behaviour (transfer of 
input to output values) are deduced. The toothed gear pair, especially the spur gear variant, 
will be our example. This example is chosen because toothed gears belong to the most com-
plex machine elements and because (for this reason?) their dynamic behaviour often is com-
pletely ignored – at least in basic teaching of machine elements.  
In order to show that system modelling according to the principles and rules presented in this 
contribution can vary in level of details, we will make the multi-pole model of the gear pair 
gradually more complex by first ignoring and afterwards step by step adding effects and ele-
ments describing these. At the same time we want to show that the modelling method pre-
sented here can offer considerable advantages in understanding and explaining (the beha-
viour of) the machine element itself: The entire input/output behaviour of the element (includ-
ing the dynamics) can be quite efficiently explained in terms of four-pole block diagrams and, 
based on these, (differential) equations describing this behaviour can be deduced; all this 



can be carried on an abstract/formal level (and, subsequently, can be partly automated) with-
out having go into physical or even layout details. 
For reasons of space, in this contribution the consideration will be confined to one set of spur 
gear pairs. In [Weber-05] some extended considerations are presented: cascaded gear pairs, 
gear trains with internal power-split (and the resulting question of load distribution) and epi-
cyclic gear trains (having three external “port”/shafts).  
 

5.1 Overview, first (“global”) approach 
As an introduction figure 16 shows 
the sketch of a spur gear pair to be 
examined. Apart from the input and 
output values at the two “ports” of the 
element (M1, ω1, M2, ω2), the sketch 
displays the parameters that contrib-
ute to the transfer of input to output 
values. 
Form a global point of view, the gear 
pair as a whole, according to figure 
16, can be understood as a single ele-
ment transmitting torque as well as 
angular velocity (thus transmitting ro-
tational mechanical power), with the 
gear ratio i as the coefficient of the 
linear mathematical transfer function. 
The corresponding four-pole structure 
is shown in figure 17. 
 
 Figure 16. Toothed gear pair;  
  sketch and functionally 
  important dimensions  

 

  Figure 17. Four-pole block diagram of toothed gear pair 
according to figure 16 (global view) 

The following transfer equations can be deduced from the block diagram: 

21 i ω⋅=ω  (23)

12 Mi)M( ⋅=−  (24)

The global approach may be sufficient if the gear pair is seen as a whole, e.g. as a compo-
nent of a larger system. But if the functioning and the behaviour of the machine element itself 
is to be considered it is necessary to break down and examine more deeply its inner struct-
ure.  
 

5.2 Rigid teeth, forces and motions considered in circumferential direction 
As a first step of a more detailed consideration figure18 shows a sketch of the forces and 
velocities inside the gear pair in circumferential direction (u).  
 



   
Figure 18. Forces and velocities inside the toothed gear pair according to figure 16 

(circumferential consideration, teeth assumed rigid) 

 
The related four-pole block diagram is shown in figure 19. It consists of two ideal transfer 
elements (converting the torques and angular velocities at the outer ports into circumferential 
forces and velocities by means of the two wheel bodies) plus a „cross-coupling element“. 
This element represents the force transmission between the two wheels, at present assumed 

to be rigid and in the case of gear wheels 
realised by positive drive through the teeth. 
The ideal transfer elements refer to section 
4.1 (see figure 7), the “cross-coupling ele-
ment” is an example of elements describing 
elasticity effects discussed at the end of sec-
tion 4.3, with the special case “rigid force/ 
torque transmission” relevant here (see fig-
ure 15). 
 
 
Figure 19. Four-pole block diagram 
of toothed gear pair (circumferential 
consideration, teeth assumed rigid) 

 
The mathematical transfer functions that can be deduced from the block diagram according 
to figure19 are the following:  
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5.3 Elastic teeth, forces and motions considered in circumferential direction 
It is now relatively easy to replace the assumption of a force transmission via a rigid pair of 
teeth with a force transmission via elastic teeth – bringing our considerations one step closer 
to reality. In doing so, we will at first stay with looking at forces and motions in circumferential 
direction. 
With regard to this modification, figure 20 shows a sketch of the forces (only); the velocities 
are the same as already shown in figure and not repeated here.  

 
Figure 20. Forces inside the toothed gear pair, velocities as in figure 18 right  

(circumferential consideration, teeth assumed elastic) 

 
It is important to notice that the transition 
from rigid to elastic teeth on the level of the 
four-pole block diagram is easily carried out 
simply by exchanging the “cross-coupling” 
of type “rigid force transmission“ according 
to figure 15 for the more general one of the 
general “elasticity type“ according to figure 
14. The result is displayed in figure 21.  
 

Figure 21. Four-pole block diagram 
of toothed gear pair (circumferential 

consideration, teeth assumed elastic) 

 
 
The four-pole block diagram is now a means to deduce the transfer equations in a purely 
formal way. In order to do this, we gradually “calculate backwards” through the whole system 
model, starting from the output values (M2, ω1), following them up across all the different in-
ner elements of the structure, until the input values (M1, ω2) are reached (see scheme in fig-
ure 6). Already in the still quite simple case considered here, this is much easier than analys-
ing the behaviour by means of physical or layout details3:  

                                                           
3 In this as in all subsequent cases we will demonstrate how we establish the (differential) transfer 
equation by pointing out explicitly all the individual steps of the “calculating backwards” procedure 
throughout the four-pole structure. 
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As the four-pole structure according to figure 21 for the first time in our study contains a dif-
ferentiation element, one the resulting transfer equations is for the first time a differential 
equation (equation (27) for motion behaviour). The transfer equation (28) for forces/torques 
is identical to the one in the case of rigid teeth (see equation (26) in the last section 5.1).  
It is to be pointed out that the tooth spring rate cu (or the compliance δu = cu

-1 as its reciproc-
al value) – both at present counted with respect to the circumferential direction – is not a con-
stant but varies with the position of the point of contact and for this reason – taking motions 
into account – varies in time. Thus, the following term applies to the differential expression 
occurring in equation (27) even in cases where the driving torque M1 is constant or is assum-
ed to be constant in time:  
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Therefore, the transfer of motion through a gear pair with elastic teeth is of non-constant vel-
ocity. 
 

5.4 Elastic teeth plus taking the wheels’ moment of inertia into account,  
      forces and motions considered in circumferential direction 
Analysing the problem in even more detail, it is now easy to take the (rotational) moments of 
inertia of the two wheel bodies additionally into consideration. For this purpose we integrate 
adequate “cross-couplings elements” into the four-pole structure (as explained in section 4.2, 
see figure 10). The resulting block diagram is shown in figure 22; it describes the behaviour 

of a toothed gear pair 
with elastic teeth and ro-
tational inertia effects, 
still with regard to the cir-
cumferential direction. 
 
 
Figure 22. Four-pole 
block diagram of toothed 
gear pair (circumferential 
consideration, teeth as-
sumed elastic, moments 
of inertia of the two wheel 
bodies considered) 

 
In the present state of describing the (dynamic) behaviour of the toothed gear pair, the situa-
tion is already so complex that it would be quite tedious to deduce the transfer equation of 
the whole system by means of the physical model. In contrast to that, the method presented 
here (“calculating backwards” through the block diagram – which, of course, has to be there 
in the first place) can be carried out in a strictly schematic way, is simple and reliable: 
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Like in the case considered in the preceding section 5.3, the tooth spring rate cu (or the com-
pliance δu = cu

-1, respectively) – again counted with respect to the circumferential direction –, 
are not constant but depend on the position of the point of contact and for this reason – be-
cause of motions – also on time.  
Equation (29) is the (differential) equation of motion. If you re-order it – all terms containing 
the output value ω1 that has to be determined or any of its temporal derivations on one side – 
and assume that the rotational moments of inertia of the two wheels J1 and J2 are constant, 
the equation is the following:  
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With the same premise (J1, J2 = const.) the equation of force can be re-formulated:  
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The equation of motion (31) is an inhomogeneous, non-linear second order differential equa-
tion for ω1. It has to be solved at first; you may then insert the result ω1 = f(ω2, M1) into the 
equation of force (32) in order to calculate the result of the latter (M2 = f(ω2, M1)).  
We do not go into the solution of the indicated differential equations in detail but will just pre-
sent some general remarks about possible solution approaches: 
• The most elegant way would be an analytical solution of the presented differential equa-

tions. In the case considered here (like in most cases relevant in engineering) this is, 
however, only possible by simplifying the equations considerably, sometimes up to an 
extent which completely distorts the physical reality.  
In the present case, for instance, an often made assumption is ω2 = const.; this would 
immediately let disappear the last term of the right side of the force equation (32).  



Another often made assumption is M1 = const. But this alone does not help much be-
cause the last term on the right side of the velocity equation (31) still is not zero. But if, 
in addition to that, instead of a time-variable tooth spring rate cu an average constant 
tooth spring rate is substituted ( uc ), then last term on the right side of equation (31) plus 
the middle term on the left side will equate zero. If you finally restrict the time variations 
of all time-dependent input and output values to sinusoidal forms, then equations (31) 
and (32) could be solved analytically. This solution, however, might only have little in 
common with reality. 

• A second possibility to solve the equations analytically is to make use of the Laplace 
transformation (see for instance [Merz/Jaschek-03]) which in the field of control engin-
eering is applied quite often. With this approach other than sinusoidal functions of time 
of input and output values can be analysed; these are, however, also ideal(ised) cases 
(e.g. step functions or Dirac’s unit pulses at the external ports).  

• If we want solutions without structural simplifications of the system and for arbitrary in-
put/output functions, then we have to use computer support – quite comprehensive soft-
ware is available for this today. The price to be paid is that a numerical solution always 
is a special solution which renders the special “system response” for concretely prede-
termined input value functions and system parameters (if these change in time).  

 

5.5 Elastic teeth plus taking the wheels’ moment of inertia into account,  
      forces and motions considered in tooth-normal and tooth-tangential directions 
The studies made so far still include an essential simplification: The forces and velocities 
transmitted between the teeth were analysed in circumferential direction. In reality, however, 
they are canted perpendicular (normal) to the teeth flanks, with additional forces and motions 
in tangential direction.  
In order to satisfy the fundamental law of motion for toothed gears (see, for instance, [Nie-
mann/Winter-03]) the direction normal to the teeth flanks differs from the direction of the pitch 
line in any point of contact X (except in point C where it could be, but does not have to be 
identical to the circumferential direction). The difference can be measured by the (local) pres-
sure angle αX. Note that in the general case (arbitrary kind of teeth geometry) the pressure 
angle αX is not a constant parameter but a function of the momentary position of the contact 
point X., i.e. αX is, in the general case, time-dependent. Only the special case of involute 
toothing (which, however, is chosen in most applications) displays a constant pressure angle 
(αX = αw = const.) at every single contact point along the entire length of the contact.  
Figure 23 shows the sketch of a toothed gear pair modified accordingly. Figure 24 explains 
forces and motions inside the gear pair in more detail – particularly how to resolve forces and 
velocities into components normal and tangential to the teeth (n, t) with contact in an arbitra-
rily chosen point X. 
The geometry parameters ρX1 and ρX2 are a measure of the momentary position of the con-
tact point X; these parameters are therefore not constant over the line of contact. They are 
related by the following geometrical condition:  

X
2w1w

2X1X sin
rr

α=
+
ρ+ρ  

(33)

In order to keep the (differential) equations deduced further below relatively simple, the two 
geometry parameters ρX1 and ρX2, which are in fact coupled by relation (33), will remain se-
parate, despite the fact that one of them could eliminated from all equations by applying 
equation (33) – but at the cost of much increased complexity.  
 



 
Figure 23. Toothed gear

pair; sketch and 
functionally important

dimensions while having 
contact in point X

In the next paragraphs we will show in a step-by-step approach how to proceed – on the 
basis of four-pole modelling – from the previous simplified view with reference to the circum-
ferential direction to an analysis with reference to directions normal and tangential to the 
teeth flanks. The starting point, representing the behaviour of a toothed gear pair with all 
forces and velocities expressed respect to the circumferential direction, is the four-pole block 
diagram already shown in the last section (figure 22).  
At first we can observe that an elastic deformation of the teeth during the mesh now has to 
be related to the direction normal to the teeth flanks. Accordingly, the elastic behaviour has 
to be measured in normal direction, i.e. by the tooth spring rate cn (or the compliance δn =  
cn

-1, respectively). Again, the tooth spring rate is no constant but varies with the position of 
the contact point and thus changes in time.  
In addition to effects of inertia and elasticity, now also resistance/friction forces will be taken 
into consideration – this is the actual gain we get when proceeding from the previous simpli-
fied view to an analysis with respect to directions normal and tangential to the tooth flank. 
In terms of the four-pole block diagram, this means that there have to be two separate 
branches inside the structure, both transmitting forces as well as velocities, one of them for 
forces and velocities in the direction normal to the teeth flanks, the other one for forces and 
velocities in tangential direction.  
In order to draw up a revised four-pole model with one normal and one tangential branch, we 
have to integrate two junction elements – one for every tooth flank. At the two tooth flanks the 
forces sum up/are superimposed while every tooth flank certainly has to have a uniform vel-
ocity state. Therefore, the junction elements to be applied can only be of the type “summa-
tion/superposition of effort variables (here: forces), accompanied by identical flow variables 
(here: velocities) according to figure 9b in section 4.2.  
The transmission of the force in the direction normal to the teeth flanks can be described by 
means of a “cross-coupling element” of the type “elasticity“ – as has been used previously 
(see figures 21 and 22). Our reflections so far lead to the – still incomplete – four-pole block 
diagram shown in figure 25, top, as a preliminary result. 
 



 

Figure 24. Forces and velocities inside the toothed gear pair according to figure 23 
(consideration with reference to directions normal and tangential to the teeth flanks) 

 
Looking at the arrows inside the structure, which partially are still „open“, you may recognize 
that a “cross-coupling” of type “resistance” has to be integrated into the branch of the struct-
ure that describes the transmission of forces and velocities tangential to the teeth flanks.  
The result is displayed in figure 25, bottom. The transfer “constant” (-dt) displayed in the 
“tangential branch” of the structure has only a symbolic meaning: Neither Coulomb-type “dry” 
friction nor Newton-type “fluid” friction and certainly not the mixture of both can be described 
by means of a linear transfer function. 
The four-pole block diagram according to figure 25 is now especially interesting because you 
can deduce from it the transfer equations of the system in a strictly formalised and relatively 
simple way. In the following we will show again every single step of “calculating backwards”, 
starting from the output values (M2, ω1), following them up across all the different inner ele-
ments of the structure, until the input values (M1, ω2) are reached. 
 



 

 

 
Figure 25. Development of the four-pole block diagram of toothed gear pair (consideration 

with reference to directions normal and tangential to the teeth flanks, teeth assumed elastic, 
moments of inertia of the two wheel bodies and friction forces considered) 
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Equation (34) is the differential equation describing the behaviour of the motion values of the 
toothed gear pair according to figure 24 and the four-pole block diagram according to figure 
25. Equation (35) is the corresponding (differential) equation to describe the force transfer 
behaviour.  
Still missing in both equations (34) and (35) is a mathematical function for the resistance 
force at the tooth flanks (“law of friction”). In principle it looks like this:  

Law of friction: ( )tt vfF ∆=  (36)

∆vt is the relative velocity between the teeth in tangential direction (“relative slip”). It can also 
be determined from the four-pole block diagram according to figure 25 by “calculating back-
wards”, this time starting with ∆vt:  
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In equation (37) you can see as first term the familiar result arising from a purely steady-state 
analysis (see, for instance, [Niemann/Winter-03]). But in the dynamic case discussed here, a 
second term is added that considers superimposed influences of outer and inner values 
which are generally not constant in time.  
In terms of solving our problem as a whole, the results are not very pleasant: In principle you 
would have first to solve the (differential) equation of motion (34) for the gear pair as a whole 
before you can satisfy equation (37). Equation (37), however, was only introduced to insert 
its solution into equation (36) which, in turn, is needed to solve the original equation (34). 
Only a (computer-supported) iterative approach could solve the while problem, but this shall 
not be discussed in detail here. 



In order to determine the resistance/friction force Ft with respect to the relative tangential vel-
ocity ∆vt (equation (36)) in the most simple (albeit often used) case an approach according 
to Coulomb (“dry”) friction is applied [Niemann/Winter-03]. In this case the dependence of 
∆vt would have the mathematical form of a signum function. Conditions are getting more and 
more complex if we take Newton’s law of fluid friction or mixed dry/fluid friction as a basis. In 
this contribution, the main focus of which is not the exploration of friction in toothed gears, we 
will not elaborate on this subject.  
If we now assume – as already done before – that the two moments of inertia do not change 
in time (J1, J2 = const.) and if we re-order equations (34) and (35) in such a way that all 
terms containing the respective output value (ω1, M2) or derivatives of it are written on one 
side we obtain the following formulation:  
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As was already mentioned above in the (often used) special case of involute toothing the fol-
lowing applies:  

Involute toothing: .constwX =α=α  (40)

Using equation (40) for gear pairs with involute toothing the (differential) equation (38) of mo-
tion can be substantially simplified: 
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Again we will not elaborate on the solution of the differential equation.  
 

5.6 Concluding remarks 
The example of toothed gears could be extended a lot further. As was already stated at the 
beginning of this chapter, in [Weber-05] some additional studies on cascaded gear pairs, 
gear trains with internal power-split (and the resulting question of load distribution) and epi-
cyclic gear trains (having three external “port”/shafts) are presented. Other extensions would 
be helical gears, bevel wheels, etc. All this will be stopped now, because the main task of the 
example was to demonstrate how the principles and methods of setting up and analysing 
multi-pole block diagrams elucidated in chapter 4 can be applied in the field of mechanical 
components, including the field of machine elements. The aim was to demonstrate 
• that on the basis of a given multi-pole block diagram the equations describing the (dy-

namic) transfer behaviour of a system can be derived following to strictly formal, basical-
ly simple criteria which in complex cases is a lot easier than analyses based on physical 
or layout models, 

• that the results identical, sometimes even more accurate than those attained by a con-
ventional analysis because simplifications do not have to be implemented a priori,  



• that the setting up of four-pole block diagrams, which are the precondition for the ap-
proach shown, is itself realised according to relatively simple principles and rules, and 

• that multi-pole models for mechanical (and other) components are “scaleable”, i.e. they 
can be adapted to different development phases and/or application scenarios by adding 
or leaving out effects (from a very simplified “global” up to a most detailed study)4. 

The only precondition to use the principles and methods demonstrated in this paper is to get 
familiar with the logical/functional way of reasoning. However, the author considers the rela-
tive abstractness of the approach to be an advantage rather than a problem, because it is 
necessary for the comprehensive dealing of mechatronic systems anyway. 
 

6   Summary and conclusions 
This paper has attempted to expose how to develop and use models of mechanical compo-
nents on the basis of the multi-pole theory. The author’s recapitulating conclusion is that 
these models are readily applicable in this field, can provide some advantages and could be 
a possible unified basis for the modelling (and subsequent simulation) of mechatronic sys-
tems. 
When asking for alternatives, on one hand control block diagrams [Isermann-99, Nordmann/ 
Birkhofer-03], and on the other hand so-called Bond Graphs [Wellstead-79, Breedveld-84, 
Karnopp et al-00] are named and sometimes clearly favoured. In [Weber-05] advantages and 
disadvantages of these alternatives are briefly discussed and reasons are given for the 
author’s preference of the four-pole models presented here. 
The introduction of multi-pole block diagrams for mechanical (and other) components as well 
as the subsequent derivation of the transfer (differential) equations are not an end in itself, 
but precondition and basis for computer-supported system simulation. For that purpose, the 
equations/equation systems have to be transferred into corresponding programmes (like 
MatLab Simulink), here they have often to be re-formulated and can then be (numerically) 
solved. This is not always possible without problems, but these shall not be discussed here 
(see [Weber-05] which contains at least some basic information).  
To conclude, a couple of notes concerning teaching issues in the field of machine elements 
should be made: 
The author is convinced that machine elements teaching has to move towards a more sys-
tematic approach based on design science or design theory and methodology [Eder-04, 
Eder-05a, Eder-05b], and at the same time has to enhance the scope towards mechatronic 
elements and systems (as was already presaged in the so-called Heiligenberg Manifesto in 
1997 [AKME-97]). To achieve this, first steps have already been taken at several universities 
– above all at the Technical University of Darmstadt [Nordmann/Birkhofer-03]). Also at Saar-
land University, the author’s home institution, the machine elements course was extensively 
reorganised: Since winter term 2004/2005 it carries the new title “mechatronic elements and 
systems” (similar to Darmstadt) and is (again similar to Darmstadt) jointly lectured by the 
author and a colleague with a mechatronics and systems theory/simulation background 
(Prof. Andreas Kugi). In these lectures, parts of the principles and methods of modelling pre-
sented in this paper are already used (together with a thorough physical foundation of the 
subject which was not addressed in this paper). 
Of course, this costs additional effort and extra time. So what are the benefits?  
In the author’s opinion they are not at all confined to making machine elements “mechatron-
ics-compatible”. Even more important could be benefits for the subject “machine elements” 
itself: The logical/functional way of reasoning opens new options to explain the functioning 
and the physics of machine elements much more systematically and sometimes even more 
accurately (i.e. with less simplifying assumptions and with more overview) than is possible 
with traditional approaches and methods. 
                                                           
4 This was, in fact, only sketchily shown in this paper because of the bottom-up approach (proceeding 
from simpler to more complex models). There are relatively simple rules for the systematic top-down 
simplification of multi-pole structures which are not presented here for lack of space. 
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