
1

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN
ICED 03 STOCKHOLM, AUGUST 19-21, 2003

A PRACTICAL TOOL FOR MASS-CUSTOMISING CONFIGURABLE
PRODUCTS

Juha Tiihonen, Timo Soininen, Ilkka Niemelä, and Reijo Sulonen

Abstract
Configurable products are an important way to achieve mass-customisation to satisfy individ-
ual customer requirements. We describe a novel configurator prototype that supports tailoring,
i.e. configuring, such a product. It contains a semi-visual modelling tool based on a high-level
object- and product structure-oriented modelling language with a clear formal semantics. The
main functionality is delivered by a configuration support tool aimed at e-commerce. This tool
provides intelligent support for configuring a product by applying a state-of-the-art inference
engine for the form of logic programs on which the formal semantics is based. The user inter-
face of the tool is generated almost automatically. We have modelled four real products from
two domains and tested the efficiency of the inference engine on them. For this, we use a
modelling-language-independent method for systematic testing. For these products, the mod-
elling language is suitable and the inference engine efficient enough for practical use.

Keywords: configuration modelling, customisation, product families, product modelling, web-
based systems.

1 Introduction

Mass-customisation aims at satisfying the specific needs of individual customers with mass-
production-like efficiency. One important way to achieve mass-customisation is to develop
and market configurable products [1]. A configurable product is designed once and this ad-
vance design is used repetitively in the sales-delivery process to produce a specification of a
product individual that meets the customer requirements. This repetitive configuration task
requires only limited and systemised variant design, which makes the sales-delivery process
simple and the lead-time short. All the information on the possibilities of adapting the product
to customer needs is described in a configuration model that defines the set of pre-designed
components, and rules on how these can be combined into valid product individuals.

A product configurator (or configurator for short) is an information system that enables the
creation and management of configuration models and supports the configuration task. A con-
figurator generates a specification of a product individual that meets the given customer re-
quirements and complies with the configuration model. This support is based on applying arti-
ficial intelligence techniques that provide inference on the basis of a configuration model and
requirements specified by the user. Several formal models of configuration knowledge and
tasks based on e.g. constraint satisfaction problems (CSP), rule-based reasoning, and different
logical formalisms have been proposed and implemented [1], [2]. Each has its strengths and
weaknesses and there is no dominant approach. Many of them have also been shown poten-
tially computationally very expensive [3], which could make them impractical. There are

2

some documented results on the practical efficiency of configurators, e.g. [4], [5], [6], but
thorough and wide range empirical testing of configurators on real products is still lacking.

In this paper we give requirements for a practical configurator intended to support e-
commerce (Section 2). Then we describe the core features, architecture and key design solu-
tions of a web-based configurator prototype WeCoTin (acronym for Web Configuration
Technology) that corresponds to needs of companies selling configurable products (Section
3). In addition, we describe a test method for empirical performance testing of configurators.
The method is based on the idea of simulating a naïve user inputting random requirements to a
configurator. We give results of performance testing on one of the four products modelled to
validate WeCoTin (Section 4). Finally, we discuss and compare WeCoTin and our results
with related work, summarise our experiences on the configuration modelling method (Sec-
tion 5), and present conclusions and topics for further work (Section 6).

2 Practical requirements for a configurator

In this section we present central requirements specific for a practical web-based configurator.
The requirements were identified in joint projects with manufacturing industry and our previ-
ous work, e.g. [7]. In the following, modeller refers to a person who creates and maintains
configuration models and related information, and an end-user (or user) configures a product.

Configuration models need to be changed to reflect the changes in product offering. Long-
term management of configuration models has often been a problem; an extreme example, the
R1/XCON system, is documented in [8]. To facilitate long-term management, product experts
such as product managers should be able to model the products. This avoids the cost of ex-
perts such as knowledge engineers or programmers that are traditionally needed to maintain
configurators and eliminates the error-prone communicating of product knowledge to separate
modellers who are not product experts. Modelling should be easy-to-understand for product
experts, and declarative allowing the modeller to specify what kind of product individuals are
valid instead of procedural requiring specification of how to create them. The modelling lan-
guage should be object-oriented to divide configuration models into relatively independent
pieces with low complexity and to exploit their common characteristics. It should be straight-
forward to model typical configuration phenomena such as alternative components in a prod-
uct structure. The user interface for end-users should require little work and no programming
to create and maintain when products change. In addition to effortless modelling, advanced
long-term management requires support for modelling the evolution of products, components
and their interdependencies in a way resembling configuration management (CM) and product
data management (PDM). Further, it should be possible to efficiently deploy configuration
models to sales people and customers without the risk of using out-dated configuration mod-
els, and multiple users should be able to configure products simultaneously. Configurations
should be exportable to e-commerce, ERP, or PDM systems, etc. for further order processing.

Fundamentally, a configurator must check a configuration for completeness (i.e. that all the
necessary selections are made) and consistency (i.e. that no rules are violated) with respect to
the configuration model. It should be impossible to order an inconsistent or incomplete con-
figuration. The user should be further supported by deducing fully the consequences of previ-
ous selections. This means, e.g., automatically making selections implied by the previous se-
lections, identifying alternatives incompatible with them, and ensuring at each stage of the
configuration task that the user does not end-up in a "dead-end" that cannot be completed into
a complete configuration due to previous selections. In addition, explanations for incompati-

3

bility of selections should be available. This helps users in learning the product and its restric-
tions. However, it should be possible to make incompatible selections, which can help an ex-
pert user to quickly modify the configuration. Ease and flexibility of use for non-expert users
of a web-based configurator implies a number of specific requirements. The user should be
kept aware of selections that have been made and that must still be made, and about state of
completeness (complete, incomplete) and consistency (consistent, inconsistent) of the con-
figuration. It should be possible to guide a non-expert user through selections, but allow ex-
perts to make selections in different order. Further, the configurator should be accessible to
any customer who can use a web-browser, preferably in his own language.

3 WeCoTin Configurator

In this section we describe WeCoTin, a configurator prototype whose high-level architecture
and main functionality reflect the requirements set above. WeCoTin consists of two main
components: a graphical modelling environment Modelling Tool for modellers (Section 3.1,
shown on the right in Figure 1) and the web-based WeCoTin Configuration Tool that supports
the configuration task (Section 3.2, shown on the left in Figure 1). WeCoTin is implemented
with the Java 2 Platform and Java programming language, except when noted.

 HTML (HTTP)

Configuration etc. (RMI)

Compiled PCML
BCRL, XML

Information
 flow (protocol)

Modelling toolWeb Browser

ConfigurationServlet

ConfigurationServer
Smodels interface

PCML core

User Interface Smodels interface

PCML core

File system

PCML
 XML

Compiled
PCML
 BCRL Component

Legend

lparse

smodels

Figure 1. WeCoTin Architecture: Configuration Tool on the left and Modelling Tool on the right

3.1 WeCoTin Modelling Tool
Modelling Tool is used for creating and editing configuration models and information needed
to generate a user interface for end-users. Configuration models are expressed in Product Con-
figuration Modelling Language, PCML. The component “User Interface” in Modelling Tool
(Figure 1) displays the current configuration model and facilitates editing it. It modifies the
data structures representing the configuration model in component “PCML core” (Figure 1)
according to modeller actions. A save operation stores the configuration model as PCML. The
tool also compiles the configuration models for use in WeCoTin Configuration Tool.

PCML is object-oriented and based on a practically important subset of a synthesised ontology
of configuration knowledge [9]. The main concepts of PCML are component types, their com-
positional structure, properties of components, and constraints. Component types define the
parts and properties of their individuals that can appear in a configuration. A component type
defines its compositional structure through a set of part definitions. A part definition specifies
a part name, a non-empty set of possible part types (allowed types for brevity) and a cardinal-
ity indicating the possible number of parts. A component type may define properties that pa-

4

rametrise or otherwise characterise the type. A property definition consists of a property
name, a property value type and a necessity definition indicating if the property must be given
a value in a complete configuration. Component types are organised in a class hierarchy
where a subtype inherits the property and part definitions of its supertypes in the usual man-
ner. A component type is either abstract or concrete. Only an individual directly of a concrete
type can be used in a configuration. Constraints associated with component types define con-
ditions that a correct configuration must satisfy. A constraint expression is constructed from
references to parts and properties of components and constants such as integers. These can be
combined into complex expressions using relational operators and Boolean connectives.

Figure 2. Configuration model of a Car (left) and the corresponding user interface (right)

Figure 2a illustrates the concepts. The component type Car has a part definition with part
name Engine, allowed type Motor, and cardinality 1. The abstract component type Motor has
concrete subtypes Petrol18, Petrol20, and Diesel22. Car also has a part definition with
part name GearBox, allowed type Transmission, and cardinality 1. Car defines, out of the
figure, a property with property name Styling, value type string constrained to values
"Standard" and "Elegance". In addition, Car specifies three constraints, shown in Figure 2c.
c1 specifies that Engine of type Petrol18 and Styling "Elegance" are incompatible, c2
states that Engine of type Diesel22 requires a GearBox of type Auto_transm, and c3 says
that GearBox of type Auto_transm requires that Styling is "Elegance".

PCML is declarative and it has formal implementation-independent semantics provided by
mapping it to weight constraint rules[10], a form of logic programs. The basic idea is to treat
the sentences of the modelling language as short hand notations for a set of rules in the weight
constraint rule language (WCRL), see [3] for details. A configuration is a logical model (so-
called stable model) of the set of rules representing the configuration model.

The class hierarchy and compositional structure are edited semi-visually in Modelling Tool.
Component type tree displays the class hierarchy (top-left, Figure 2a) and serves as a starting
point for adding, deleting and manipulating component types, their part and property defini-
tions, and constraints. The compositional structure is shown in the part hierarchy tree, (bot-
tom-left, Figure 2a). It enables adding allowed types and part definitions with drag&drop from
the component type tree. The currently selected object is shown and edited to the right of the
trees, the example in Figure 2a is part definition Engine in component type Car.

A web-based user interface for the end-user is generated without programming. The idea is
that each selectable property or part of a component individual being configured generates a
question. The modeller can define for a component type how the questions in an individual of

5

that type are grouped and ordered. In the example of Figure 2a, parts Engine and GearBox of
component type Car were put to the first group named "Basic", and property "Styling" was
put to the second group "Options". Normally, questions of a group are answered before con-
sequences are deduced, but the modeller can mark some questions as requiring immediate in-
ference. Further, the modeller can give a display name in different languages to component
types, parts, possible values in property domains, etc. Display names were given to subtypes
of Motor and Transmission to offer information relevant for selecting a motor to English-
speaking users, while using more technical names for component types in the configuration
model. Grouping information, display names, etc., are stored as XML files.

3.2 WeCoTin Configuration Tool
WeCoTin enables users to configure products over the web using a standard browser. The
component ConfigurationServlet (Figure 1) acts as a presentation layer that generates dynami-
cally the user interface for end-users that employs HTML and JavaScript. The interface con-
sists of the following parts: 1) The configuration tree (Figure 2b, left) gives an overview of
the configuration: compositional structure is shown along with properties and their values.
Effectively, selections already made and selections still to be made are shown. Error messages
related to violated constraints are collected above the tree. The configuration tree also pro-
vides navigation to configure in free order: nodes of the tree serve as links to different parts of
the configuration. 2) A status area (bottom-right in Figure 2b) indicates the status of the con-
figuration in terms of consistency and completeness, e.g. a green OK means that the configu-
ration is consistent and complete. The status area also shows calculation results, such as price.
3) A group of questions related to a component individual and derived from the configuration
model and grouping information is represented as an HTML form (top-right in Figure 2b).
Suitable HTML form elements are automatically selected for each question but the modeller
can use Modelling Tool to specify the form elements to use. Incompatible alternatives are
greyed out. However, the user is free to make incompatible selections. In this case, the user
gets information about violated constraints. The form also has a number of buttons that are
explained below. 4) Optional tailoring elements, e.g., a company logo or images can be added
through separate HTML templates. The templates also define the layout of the user interface.

ConfigurationServlet provides a guided order for the configuration task by traversing the con-
figuration tree a group at a time, in depth-first order, when the “Next”-button is used; clicking
a branch in the tree provides a free order. The browser submits answers to the questions to
ConfigurationServlet when the user presses the “Next”-button, navigates using the configura-
tion tree, or answers a question marked as requiring immediate inference. ConfigurationServ-
let then modifies the configuration to reflect the answers and sends it to ConfigurationServer
component (Figure 1). ConfigurationServer sends back a configuration reflecting the results of
inference and calculations (described below). ConfigurationServlet generates a display with
new questions and updated information reflecting the new configuration. When the configura-
tion is consistent and complete, a “Ready”-button is shown enabling proceeding to order the
product individual. This shows a summary of the configuration and “Order”-button that trans-
fers the configuration to an exporter (described below).

The ConfigurationServer (Figure 1) provides the application logic layer of the configurator. It
manages sessions with a number of simultaneous users, includes data structures to represent
configuration models and configurations (PCML core in Figure 1) and provides a service to
configure a product with respect to a configuration model and requirements. To provide con-
figuration service, ConfigurationServer uses as the inference engine an implementation of the
weight constraint rule language called Smodels [10]. The main functionality of the Smodels

6

system is to compute for a WCRL program a desired number of stable models that are con-
strained by requirements specified as a so called compute statement. The Smodels system is
based on a two-level architecture where in the first phase a front-end, lparse, compiles a
WCRL program with variables into simple basic rules (BCRL) containing no variables. This
potentially costly compilation process is performed off-line. The search for models of BCRL
programs is handled using an efficient, linear space search procedure, smodels. Smodels is
implemented in C++ and offers APIs through which it can be integrated into other software.
Smodels is publicly available at http://www.tcs.hut.fi/Software/smodels/.

As a final step of modelling, the Smodels interface component in Modelling Tool (Figure 1)
compiles [3] a PCML configuration model into a WCRL program, and further, using lparse
(Figure 1), to BCRL. The BCRL form of the configuration model is loaded to smodels search
procedure to repetitively configure a product. ConfigurationServer connects to smodels via its
Smodels interface (Figure 1). Smodels interface translates the user requirements represented
as property values and component individuals in a configuration to a compute statement that
is sent through the API to smodels. Consistency of the requirements is checked by trying to
compute a configuration that satisfies the requirements. Deducing consequences of require-
ments is based on computing an efficient approximation of the set of configurations satisfying
the requirements. Intuitively, the approximation contains a set of facts that must hold for the
configurations satisfying the requirements, a set of facts that cannot be true for the given re-
quirements, and a set of unknown facts [10]. Based on this approximation, Smodels interface
generates a new configuration, and hands it to ConfigurationServer. ConfigurationServer uses
its calculation subsystem for computing results such as price or delivery time before the con-
figuration is returned to ConfigurationServlet.

Our default exporter creates a XML representation of the configuration and stores the HTML
summary of the configuration. An exporter interface provides an API for writing exporter
modules to transfer configurations to external systems. Implemented exporters include Inter-
shop 4 e-commerce system, EDMS2 product data management system and Vertex 3D CAD.

4 Empirical testing

In this section we describe a method for testing performance of configurators and apply it to
WeCoTin. We briefly describe our benchmark products and summarise our empirical results.
One could test a configurator by using real or randomly generated configuration models.
There is a risk that random models without a large set of real products as a seed would not re-
flect the structured and modular nature of products designed by engineers. Therefore we test
WeCoTin with real configuration models and a wide range of random requirements. For gen-
erating random sets of requirements, we consider how the configuration model appears to a
user configuring a product. There are menus (possibly multi-choice), radio buttons or check
boxes to select between different alternatives. Guided with these, it is probable that the user
will not break the "local" rules of the configuration model, e.g. by requiring alternatives that
do not exist or by selecting a wrong number of alternatives. However, a naïve user can easily
break the rules of the configuration model that refer to the dependencies of selections.

We follow this idea by considering the configuration model as consisting of a set of “local”
requirement groups. A requirement group (group for brevity) represents a set of potential re-
quirements (requirement items) that a user could state. In our tests, a group is created for each
property and part definition of the type of each individual. A value in the domain of a property
and each potential part individual for a part corresponds to one requirement item. We generate

7

random requirements by repetitively selecting at random a group and further a random re-
quirement item of that group, while ensuring that at most as many items as is allowed by the
configuration model are selected from each group. A test case contains a number of thus cho-
sen requirement items. We note that this test methodology could be applied relatively easily to
other formalisms because it only assumes the availability of a user requirements perspective.

We used PCML to model three screw compressor families and one 4-wheel vehicle. The
compressor models were detailed almost to production quality, but the vehicle model origi-
nally created for demonstration purposes represented only about half of the sales view. In this
paper we describe for brevity only one configuration model and its performance. Full test re-
sults of all products and further details of the test setup are described in [3] and are available
at http://www.soberit.hut.fi/pdmg/Empirical/. A model called ESVS is reported because it
shows the weakest performance in finding the first configuration satisfying the requirements
and also because it is the largest model. There are 9 component types, 3 part definitions, and
24 properties, 17 of which have small domains of 2-3 possible values, but the largest domain
size is 61. The number of constraints is 20.

We measure performance using execution time due to its practical importance for users. All
the tests were run on a laptop computer with 1 GHz Mobile Pentium III processor. We used
smodels with modifications that suppressed the output of found configurations to prevent the
task from becoming I/O bound. According to our experiences, the timing result averages are
repeatable to 1/10th of a second. The average time of 100 executions to translate the configura-
tion model expressed in PCML to WCRL was 8.2 seconds. We generated 100 test cases for
each even number of requirements up to the total number of groups. Table 1 shows the aver-
age performance of searching for ESVS configurations. A test case was considered satisfiable
if a configuration was found with the requirements, otherwise it was considered unsatisfiable.
Each row lists the number of requirements, the number of satisfiable cases, time to find one
configuration and the time to determine unsatisfiability. “Find all” gives the average number
of configurations per satisfiable case (“#cfgs /case”) and the average rate of configurations
found per second (“#cfgs / s”). All the results include the time required by smodels to read the
BCRL program and to perform the required computation.

Table 1. ESVS compressor results with test cases

ESVS Find first Find all Unsatisfiable
#requirements #satisfiable (seconds) #cfgs / case #cfgs / second (seconds)

0 100 0,37 1,841,356,800 100066 (1 run) -
2 89 0,37 189441067 88238 0,30
4 61 0,35 18987439 76849 0,28
6 25 0,34 2234799 72687 0,29
8 9 0,33 211432 19957 0,28
10 4 0,31 1920 263 0,29
12 1 0,32 15552 526 0,29

14-28 0 - - - 0,30

5 Discussion and previous work

In this section, we first discuss the practical feasibility of WeCoTin in the light of what we
consider the most important configurator-specific requirements: advanced support for long

8

term management consisting of usability of the modelling language and support for product
evolution, efficiency of the inference engine, and the basic architecture. We then discuss rela-
tionships of our approach to some of the most closely related work.

WeCoTin has not been in production use and its practical utility has thus not been fully
proved. PCML contains an extension of product structures, which we find [7] a natural way
for engineers to conceptualise products. PCML was expressive enough to model the intended
sales views of the case products, and all its concepts were useful. However, adding separate
modelling concepts for sales features or functions would improve modelling. Modelling the
largest compressor and the vehicle required each a few hours from the first author, excluding
knowledge acquisition. Furthermore, the language seems accessible to other engineers: a
software developer of the WeCoTin project who had not participated in the development of
PCML modelled two compressors, and a mechanical engineer with good understanding of
configurable products but no computer science background modelled another type of a vehicle
and further two compressors each with a few days of effort, including knowledge acquisition.

Informal feedback from manufacturing companies indicates that the web-based architecture
enables easy access to the configurator for a significant part of their potential users connected
to the Internet or Intranets, but would be a problem for some. It has been easy to integrate
WeCoTin to external systems for demonstration purposes. The user interface and performance
of the WeCoTin Configuration Tool has received positive feedback from several companies.

Our test results indicate that the inference engine performs well with the case products. There
were no test cases with repeatable significantly inferior performance. The average configura-
tions per second results weaken with an increasing number of requirements. However, this
seems to be mostly illusory: because there are few configurations with many requirements,
Smodels uses most of the time for reading the BCRL program and to set up the computation.
Our case products had a relatively small number of components and properties. However, we
feel that they are representative of what is needed in sales configuration. We expect that the
suitability of the modelling method and good performance of our configurator also applies to
other products suitable for web-based sales configuration.

PCML supports variation of the compositional structure in a way resembling generic product
structures [11]. PCML adds object-oriented flavour, e.g. types, instances and inheritance but
lacks separate concepts for mapping from input information to structure of the product indi-
vidual. WeCoTin lacks support for modelling the evolution of products, components and their
interdependencies. Therefore full support for advanced long-term management is insufficient,
but such support is lacking also from reported previous configuration research.

There is a body of previous research in supporting configuration problems, e.g. [1] and [2],
starting from the R1/XCON system at Digital. The main difference compared to XCON and
AI shells such as OPS5, CleverPath Aion, or Blaze Advisor is that WeCoTin provides a de-
clarative configuration modelling language aimed to configuration modelling. Further, this
language has clear formal semantics, which provides provably sound and complete inferences
based on the model and requirements. This is a general difference with respect to e.g. generic
product structure based work [11] and most of the more recent work on configuration [2].
WeCoTin clearly separates modelling from the inference engine making it possible to improve
the inference engine without changing the modelling language and its semantics. In XCON,
both the product model and the control of the flow of inference were coded using unstructured
production rules, which led to serious maintenance problems when the product changed, as
the interactions between rules and their execution grew very complex [8]. Moreover, our con-
figuration specific conceptual model makes automatic user interface generation practical.

9

However, WeCoTin currently supports a less expressive modelling language than some sys-
tems [2], e.g. resources and connections are missing making it difficult to model e.g. some
rack-mounted products. Support for configuration tasks with dimensioning or other engineer-
ing calculations is limited as WeCoTin currently supports integer arithmetic only. Further,
there are reports of configurators being used in real production environments, which indicates
their practical utility. None of them have been built to specifically meet the requirements of
the web-environment, however.

Parametric and feature based 3D CAD/CAE tools [12] are based on geometric modelling
whereas WeCoTin configuration models do not include geometry. Inference in WeCoTin is
sound and complete, which is not the case in typical CAD/CAE calculation and constraint sys-
tems. Therefore, a CAD/CAE user is eventually responsible for keeping the design consistent
and must resolve situations where the tool does not find a solution even if one exists.

We provide detailed testing data on our approach unlike most of the previous work. Some of
the notable exceptions are [4], [5], and [6]. Syrjänen configured Debian GNU/Linux operating
system whose configuration model was expressed as packages, their versions and simple con-
straints. Syrjänen used an earlier version of Smodels [4]. Compared to this, we provide a
richer modelling language geared towards mechanical products, while lacking support for ver-
sion management. The configuration efficiency was approximately the same as in our largest
ESVS model. Other previous work does not make direct performance comparison possible
due to missing details and differences in modelling. Sharma and Colomb developed a con-
straint logic programming based, port and connection oriented language for configuration and
diagnosis tasks. Experimental results stem from thin ethernet cabling configuration. Finding a
12-node configuration including 126 port connections required 12 seconds on two 60 Mhz
SuperSparc processors [5]. Mailharro used the Ilog system to configure the instrumentation,
control hardware and software of nuclear power plants. The modelling language is richer and
the case product larger and more complex than ours. Several thousand component individuals
were created and interconnected in about an hour of execution time on a Sun Sparc 20 [6].

6 Conclusions and future work

We presented the requirements and design of a novel configurator prototype that supports tai-
loring a configurable product. The tool contains a semi-visual modelling tool based on a high-
level object- and product structure-oriented modelling language with a clear formal semantics.
In addition, it contains a configuration support tool whose architecture is aimed at e-
commerce. This tool provides intelligent support for configuring a product by applying a state-
of-the-art inference engine for the form of logic programs on which the formal semantics is
based. The tool creates automatically a web-based user interface. We modelled four real prod-
ucts from two different domains and tested the efficiency of the inference engine on them. For
this, we used a modelling-language-independent method for systematic testing based on simu-
lating a naïve user inputting random requirements to a configurator.

On the basis our experiences, the prototype is suitable for e-commerce. The modelling lan-
guage allows efficient modelling of products for web-based sales configuration and seems
suitable for engineers without programming or artificial intelligence background. The infer-
ence engine appears to be efficient enough for practical use. However, the relatively small
sample of products from only two domains was modelled by the developers of the system.
Thus, more research is required to validate if the modelling language is usable by product en-
gineers and managers, and if it is suitable for products from different domains. Further, the

10

language should be extended to cover more complex domains. One topic identified in this
work is to provide support for modelling sales features. Moreover, the efficiency of the infer-
ence engine should be tested on products that are larger and potentially more computationally
costly to configure, e.g. telecommunications equipment modelled from an engineering point
of view. Finally, support for the management of product evolution should be added.

ACKNOWLEDGEMENTS

This work has been supported by Technology Development Centre of Finland and Academy
of Finland (third author, project 53695). We thank Andreas Anderson, Mikko Heiskala, Asko
Martio, Juha Nurmilaakso, Mikko Pasanen, Hannu Peltonen, and Kati Sarinko for their valu-
able efforts. Finally, we thank Gardner Denver Oy for sharing the configuration knowledge.

REFERENCES

[1] Sabin D. and Weigel R., “Product configuration Frameworks—a survey”, IEEE Intelli-
gent Systems & Their Applications, Vol 13(4), 1998, pp.42-49.

[2] Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AI EDAM),
Special issue in configuration, Vol. 12, 1998.

[3] Tiihonen J., Soininen T., Niemelä I. and Sulonen R., “Empirical Testing of a Weight
Constraint Rule Based Configurator”, Papers from the 4th Configuration Workshop,
15th European Conference on Artificial Intelligence (ECAI-2002), 2002, pp.17-22.

[4] Syrjänen T., “Including Diagnostic Information in Configuration Models”, Proceedings
of the First International Conference on Computational Logic, 2000.

[5] Sharma N. and Colomb R., “Mechanising Shared Configuration and Diagnosis Theories
Through Constraint Logic Programming”, Journal of Logic Programming, Vol. 37, 1998

[6] Mailharro D., “A classification and constraint-based framework for Configuration”, AI
EDAM, Vol. 12, 1998, pp.383-397.

[7] Tiihonen J., Soininen T., Männistö T. and Sulonen R. “State-of-the-practice in product
configuration—a survey of 10 cases in the Finnish industry. ” In Tomiyama T., Mäntylä
M. and Finger S., editors, Knowledge Intensive CAD, Vol 1, Chapman & Hall, 1996.

[8] McDermott J. “R1 ("XCON") at age 12: Lessons from an Elementary School Achiever”,
Artificial Intelligence, Vol 59, 1993, pp.241-249.

[9] Soininen T., Tiihonen J., Männistö T., and Sulonen R., “Towards a General Ontology of
Configuration”, AI EDAM, Vol. 12, 1998, pp.357–372.

[10] Simons P., Niemelä I., and Soininen T., “Extending and implementing the stable model
semantics”, Artificial Intelligence, Vol. 138(1-2), 2002, pp.181-234.

[11] Erens, F. The Synthesis of Variety - Developing Product Families, PhD Thesis, Univer-
sity of Eindhoven, the Netherlands, 1996

[12] Shah J, and Mäntylä M. Parametric and Feature-based CAD/CAM: Concepts, Tech-
niques and Applications, John Wiley and Sons, 1995.

For more information please contact:
Juha Tiihonen, SoberIT, Helsinki University of Technology, P.O. Box 9600, 02015 HUT, Finland
Tel: +358 9 451 3242 Fax: +358 9 451 4958 E-mail: Juha.Tiihonen@hut.fi URL: http://www.soberit.hut.fi/~jti/

