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Abstract

A large amount of design work can be classified as redesign. Effectively, this involves mod-
ifying a previous design by changing certain constraints and then redetermining the design
parameter values. This paper describes a method for inducing a stochastic model of the de-
sign space. This model provides a means for guiding a designer through the parametric design
modifications by searching for the most likely design outcome, based on Bayesian statistics. A
graphical user interface is used to interact with the model. The guidance provides a designer
with further constraints on the design space, thereby iteratively narrowing the search down to
a small region of the design space. This is illustrated by two case studies: a flat screen display
design problem and the design of a gas turbine combustor. The paper concludes with a review
of the case studies and a summary of future work being undertaken.

Keywords: Probabilistic Design; Machine Learning; Information Analysis; Product Families;
User Evaluation.

1 Introduction

Most design work can be classified asredesign. Redesign is where a product has already
been fully developed, and there is a need for changing the design of this product by a small
amount. For example, there are a large number of flat screen displays on the market. These
can all be considered as a single product family, in that they all perform the same function,
and the variants are a result of redesign work arising from slightly different specifications.
However, it is not necessarily true that this product domain is well understood and therefore
accurately modeled. Indeed, it is possible that there exist external influences that are impossible
to model that can affect the design. This provides a challenge where inexperienced designers
are tasked with redesign exercises: how are these designers to be guided through the design
process without recourse to explicit models or experts?

The aim of this research is to investigate a stochastic approach for guidance through the design
process. The focus is on determining the approximate values of design parameters between the
end of the design concept stage and the early embodiment stage in the design process. This
is achieved by allowing a designer to place an initial set of constraints on a design. The tool
then supplies a series of further constraints to be placed on the design to focus the search of the
design space. These additional constraints are ordered according to likelihood of generating a
successful design. As these constraints are added, the effects are propagated through the rest
of the stochastic model.
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A key aspect of this approach is that it requires minimal expert intervention. Domain experts
determine the set of design variables to be considered during this stage of the design process,
but not to determine any relationships between the variables. By using previous examples,
a stochastic design space model will be induced. This paper describes the mathematical ba-
sis and the implementation of this approach. Two case studies are provided to illustrate the
implementation. Finally, conclusions are drawn from the implementation in its current state.

2 Background

There is an extensive body of work regarding the creation of design models. This paper concen-
trates on a stochastic approach of modeling the design space. Similar stochastic and stochastic-
like approaches have been previously researched. One successful approach is based on Design
Structure Matrices (DSM) which provides a means for aiding designers during this concep-
tual stage [1]. This requires the list of tasks to be completed and a precedence order for these
tasks during the design process, which is supplied by domain experts. The DSM approach has
proved to be a useful tool, and by adding probabilistic information has been expanded into an
interactive tool (Signposting [2]) and a means to estimate the total time required by design pro-
cess [3]. These provide assistance in determining the path a designer should take through the
design process, but offer little help in either determining the values design parameters should
take or provide early estimates of how well the design will meet its criteria.

However, it is necessary to represent the design space in a manner that is compatible with
probability theory. In addition, the representation of the design space must also be compatible
with the design process, so that such a tool can be easily implemented as part of that process.
Such issues have been discussed in previous ICED conferences, e.g. [4, 5]. The previous
representation work aimed to capture the design form at the earliest stage possible in the design
process. This is a non-trivial task during the conceptual design stage, as good design practice
demands that at this stage a wide variety of solutions must be considered [6].

Once a concept has been selected, the design embodiment begins and a more formal and fixed
representation can be described. Typically, one such concept is used to form the basis of a
product family. A product family is where a number of slightly modified products perform
similar functions. Frequently, this occurs when a product is redesigned after it has been origi-
nally marketed, for example there are a large number of variants of flat screen displays on the
market. These displays come in a large number of shapes and sizes, serving different purposes.
Some are marketed for personal use, and these will be used in products ranging from personal
digital assistants through to wide screen televisions and will experience at most mild condi-
tions. Other will be used in public spaces, for example train timetable displays, and will need
to be designed for greater reliability. This family of designs can be parametrically described
most simply using the overall geometry of the product (width, height, depth), and the material
used. This representation can then be augmented with various characteristics of the design,
for example: weight, cost, and expected life. Some of these physical characteristics can be
computed from the design parameters, however, it is also possible to include more subjective
characteristics, e.g. some measure of desirability which is dependent on external factors for
example how the product compares to its competitors. These subjective characteristics might
only be able to be determined after the product has been marketed, and therefore these will not
be a mathematical function of the design parameters.

Once a representation has been determined for a product family, mathematical relationships be-

2



tween the design parameters and characteristics can be determined. These most frequently are
deterministic in nature, but there has also been work on achieving this stochastically, e.g. [7].
A major shortcoming of this approach has always been that these relationships can only be
expressed by domain experts. This requires a large investment of time and effort by the domain
experts, and there is the risk that it will be incomplete or inaccurate. For this reason, the aim
of this work is toinducea model from previous members of the given product family. The
approach adopted in this paper is a stochastic model of the design space. A designer will in-
teract with this model by constraining the design space incrementally. Each time an additional
constraint is placed on the design, a series of suggested further constraints will be supplied that
guide the designer to the most likely subsequent design constraint, or move, that should be fur-
ther placed on the design to ensure success. The designer is not required to follow any of these
suggestions, as these are only guides to how most designs have been done in the past, but it they
can be considered as the ‘voice of experience’. This process is continued until the design has
been fully constrained. This fully constrained design space represents themost likelyregion in
which the desired design exists.

3 Mathematics

This work induces a probabilistic model of the design space based on a series of observations.
This section provides a review of the mathematics required to create and verify such a model.
First, the probabilistic notation is described and how it is applied to the design space. Next, the
basic probability theory used is summarized.

3.1 Notation

The design space, which includes both design parameters and design characteristics, is de-
scribed as a real-valued vector. For ann-dimensional space, this can be written down as:
X = (X1, X2, . . . , Xn), and theXi’s are referred to asdesign variables. The probability of a
design with variableXi taking values betweena andb is expressed asP(a < Xi < b). Note
that it is only possible to talk about design variables taking a range of values, as the probability
of a design variable taking on an exact value is theoretically 0. In practice, the design space is
transformed into a discrete set of intervals, and therefore the probability ofXi being in thejth
interval is written asP(Xi = j). This is quite an intuitive manner, as during the early stages of
design, designers are more interested in making estimates of design variables rather than their
precise values. For example, when designing a flat screen display, a designer would be aiming
to answer questions of the nature: ‘should the display depth be: very thin, thin, medium thick,
or thick’. These categories in turn are represented by value intervals, and the exact value will
be determined later on in the design process. This approach also caters for categorical data,
e.g. material selection, as there is no longer a requirement for the variable to be continuous.

Once the intervals and/or categories have been determined, computing the probability values
is a trivial counting exercise. The probability of design variableXi being in intervalj is given
by:

P(Xi = j) =
number of examples withXi in rangej

total number of samples
(1)

3



This can be extended to the concept ofjoint probability, which is the probability of two events
occurring together. The probability ofXi1 = j1 andXi2 = j2 is written as:P(Xi1 = j1, Xi2 =
j2)1. An example of this would be asking the question ‘what is the probability of the design
being thin and having low cost?’.

Finally, there is the definition of conditional probability. Conditional probability provides a
measure of the likelihood of an event occurring, given that some other event has already oc-
curred. The conditional probability of eventA occurring, given that eventB has already oc-
curred is given by:

P(A|B) =
P(A,B)

P(B)
(2)

For example, this could be used to ask the question: ‘given that the design is going to be very
thin, what is the likelihood of using PTFE as the material?’. The notation for this statement
would be: P(material= PTFE | depth= thin). If the value of this expression is high, then
PTFE is commonly used for thin designs, and is likely to be a safe decision to use PTFE for this
design. If the value is low then PTFE is not frequently used, it is likely to be a poor choice. It
should be noted that this only provides a suggestion based on past designs. There is no reason,
other than this experience, that a designer must follow this suggestion. Therefore the designer
is at liberty to go against the suggestion.

3.2 Probability Theory

Probability theory is applied to guide the construction of the constraints on the design space.
The aim is to incrementally constrain areas of the design space that are least likely to provide
designs that meet the current set of constraints. This is achieved through the use of Bayesian
learning [8]. Bayesian learning methods provide a simple and practical approach to hypothesis
testing. In this case, the hypotheses that are to be tested are the incremental constraints to be
placed on the design space.

The problem can be specified more formally as searching for the best hypothesis from a set of
possible hypotheses,H. The search for this hypothesis will be based on the experience database
given byD. Hence, the search can be expressed as the search for the hypothesish ∈ H that
maximizes the expressionP(h|D). This probability reflects the confidence of the hypothesish
given the experience databaseD, and so effectively the search is for the hypothesis that gives
greatest confidence.

The problem with the expressionP(h|D) is that it is not clear how to evaluate either the joint
probabilityP(h,D) or the probability of the database occurringP(D) (see Equation 2). Bayes
theorem offers assistance in computing this:

P(h|D) =
P(D|h)P(h)

P(D)
(3)

This changes the nature of the computation. The termP(h) represents the prior probability of
the hypothesish and can reflect any prior domain knowledge. Typically, where no prior domain
knowledge exists, this probability is set uniformly across all potential hypotheses. The term

1an alternative notation for this is:P(Xi1 = j1 ∩Xi2 = j2)
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P(D|h) represents the probability of observing the experience database given the hypothesish.
This can be computed, using Equation 2, by counting the number of examples in the experience
databaseD that agree with the hypothesish (i.e. the joint probability ofD andh, P(D, h)).
The termP(D) is not relevant as this is a common denominator for all hypotheses to be tested.
The maximally probable hypothesis, called themaximum a posteriori(MAP) hypothesis can
then be computed as follows:

hML = argmax
h∈H

P(D|h) (4)

whereargmax returns the argument,h, that maximizes the probabilistic statement.

This is used as the basis for searching for design constraints to guide a designer to a specific
area of the original design space. The full set of possible constraints is very large, and therefore
constraints are added iteratively. At each iteration,h takes the form of constraining a single
design variable to one particular value.

4 Computer Implementation

There are two main elements to the implementation of the theory. The first represents the
inference ‘engine’, which is the implementation of the mathematics into computer executable
code. The second is the interfacing between the engine and the user. Finally, it is also important
to understand and be able to interpret the results supplied by the tool. These three aspects are
discussed individually, followed by a note on the computational costs of the tool.

4.1 Inference engine

The implementation of the theory, and its application to the design domain, is achieved in a
modular manner. The modules implement the data discretization; the constructor; the joint
probability computer; and the MAP heuristic search. The data is assumed to be complete (i.e.
no missing values or measurements), and readily available.

Data discretization Each design variable is discretized independently of the other variables.
The user supplies the number of discrete categories that are to be generated, denotedk. The
discretization algorithm aims for there to be roughly an equal number of elements in each cat-
egory, as opposed to spreading the category boundaries at equal intervals. In addition to iden-
tifying the discretization boundaries, this module also returns the design data with the original
values replaced by the categorical label. In the event that a design variable has fewer thank
categories, these are identified and limited to the number of categories truly used. An example
where one of the design variables is boolean (true/false), containing only two categories,

Constraint construction Constraints are constructed incrementally. The constraint construc-
tion module initially provides an ‘empty’ constraint structure that can be added to later. The
constraint structure is an array of lists. Each design variable has a list of design categories that
are permitted to be used. As constraints are added to the design space, no longer permitted
categories are removed from the design variable list being constrained. It is also possible to
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remove (slacken) constraints should the designer wish to re-open areas of the design space that
were previously constrained.

Joint probability The joint probability is based on the experience databaseD, given by the
discretized original dataset. The joint probability is computed by simply counting the number
of examples from the database that pass all constraints divided by the total size of the database.

MAP heuristic The MAP heuristic searches for the next constraint that should be placed on
the design space, as determined by Equation 4. The heuristic space that is searched is given
by constraining each design variable to each possible setting, resulting in testing a maximum
number ofnk heuristics. Each candidate heuristic, which is a single constraint, is intersected
with the current design constraints and the joint probability is computed. These are then sorted
in descending order of likelihood and returned as the ordered list of suggested next design
moves.

4.2 Graphical user interface

It is through the graphical user interface (GUI) that a designer both provides and receives
information from the inference engine. It is important for this interface to be as intuitive and
simple as possible for this to be quickly used by designers with minimal training.

The GUI is organized using two windows: the design state window and the move suggestion
window (see Figure 1). The design state window consists of two lists: the left-hand list is used
to select which design variable is to be constrained and the right hand list selects which ranges
are permitted. Those that are not selected represent the design areas violating the constraints.
Initially, the user sets the design state to reflect the design specification. It is assumed that this
specification has left a number of the design variable unconstrained. Once these constraints
have been selected, the user presses the ‘Suggest Move’ button on the design state window.
This then updates the move suggestion window.

The move suggestion window contains the results of the heuristic search, as described above.
These are ordered according to likelihood, and therefore, suggestions higher in the list are more
likely to result in the design performing as expected than the suggestions lower in the list. The
designer can select one of the suggested constraints from this list, and then press the ‘Apply’
button. This adds the selected constraint to the design state window, and recomputes the set of
suggestions. Figure 2 illustrates this iterative process.

4.3 Interpretation

The suggestions can be interpreted as guidance towards designing the new product in the most
frequent manner as has been done in the past that meet the current constraints. This is borne
out from the Equation 4 which searches for the incremental constraint that satisfies as many
of the previous designs as possible. This is good practice in product redesign, as the evidence
from previous designs indicates that the new design will be feasible.

Conversely, in the event that there are no further suggestions, this indicates that the constraints
represent a design that has never been attempted before. At this point there are two options:
first is that the design has been overconstrained. The designer now slackens off the constraint
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Figure 1. Left: The Design State window, constrainingx to the penultimate two categories; Right: The Heuristic
Suggestion window, listing suggested further constraints.

Design
Specification

Probabilistic Network Suggested
Moves

Refined Specification

Figure 2. Overview of the iterative scheme: an initial design specification is tightened iteratively using the proba-
bilistic network to suggest ever tighter design specifications.

set, and continues as before. The second is that the designer decides that this is due to the
specifications that have been built up during the design refining process have led to a new prod-
uct area. In this event, the designer must further investigate the new design using traditional
methods to verify if this design is feasible. From this point on, the design is going beyond the
experience database of this tool, and therefore the tool cannot be used anymore. If the design is
successful, it can then be added to the experience database, and thereby extend the useful area
the tool can operate in.

4.4 Computational cost

The overall computational cost of this approach is relatively cheap, and depends on the number
of design variables (n), the number of categories to be used (k), and the size of the experience
database (N ). The individual heuristics constrain one design variable to one interval setting,
and therefore there areO(nk) heuristics to test. Each time a joint probability is computed, the
whole experience database must be checked, which is of cost orderO(N). Hence, the total
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Figure 3. Design parameters of the flat screen display.

cost of computing the suggestion list isO(nkN). Most designers will setk < 10. A typical
design problem having in the order of ca.n < 100 design variables, with an associated design
experience database ofN < 1000. This represents an acceptable upper limit on the cost of
computing the suggestion list.

5 Case Studies

Two case studies are presented to illustrate the design change propagation tool. The first case
study is the design of a flat screen display. This is a controlled case, where the domain has
been hand-crafted and is therefore fully understood. The second case study is the design of a
gas turbine combustor. This uses industrial data to induce the design model, and is less well
understood.

5.1 Flat screen display design

The flat screen design domain is described using eight design variables. Four of these are
design parameters (i.e. parameters that can be directly changed by the designer, see Figure 3)
and the other four are design characteristics. The design parameters are: width, height, depth,
and material. The evaluation characteristics are: weight, cost, expected life, and expected sales
volume. The relationships defining weight and expected life were defined strictly in terms of
the design variables. Expected life and expected sales volumes were partly defined by ‘external
influences’. These two were related to each other and expected life. This was aimed to provide
an open aspect to the design system, representing potential design parameters that were not, or
could not, be explicitly expressed.

The aim of this case study is to verify that the method provides ‘sound advice’ as constraints are
placed on the design domain. Using the prescribed model of the display domain, a database of
2000 designs was generated. This database was used as the experience database for the system.
A number of experiments were performed, which were based on a set of different design spec-
ifications. These experiments mainly initially constrained either design parameters or design
characteristics. The suggestions were followed until the design was fully constrained. Using
the same design parameter constraints, an independent sample was drawn from the model, and
the expected characteristics were compared to those from this new sample. It was found that
the expected characteristics matched very closely the actual characteristics, demonstrating that
for this case the method performs well.
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Figure 4. Design schema of a gas turbine combustor (courtesy Rolls-Royce, plc).

5.2 Gas turbine combustor design

The combustor of a gas turbine aero engine is a well defined module of the overall engine.
The key function the combustor performs is the heating of the air flow through the engine by
burning fuel in this air. The main challenge in achieving this is providing a good air-fuel mix
throughout the combustor. The air flow into the combustor performs two tasks (see Figure 4):
first is to allow the combustion process to take place and the second is to provide cooling films
for the metal surfaces of the combustor which would otherwise melt.

The aim of this case study was to investigate the graphical user interface in an industrial set-
ting. The system was provided with database of combustor mixing elements (e.g. holes, ducts,
etc. that are placed on the combustor wall). The designers were given a previous combustor
specification to meet as a test case. The overall impression reported back were supportive of
the inference engine. It was noted that a preferred interface would guide a designer through
making specified changes while keeping the remainder of the design as constant as possible.
This will be investigated in future work.

6 Conclusions

Preliminary tests, both in academia and industry, indicate that this approach is a promising
method for providing guidance in poorly documented domains. This guidance helps in lo-
cating theregion in the design space that a designer should focus on. Theoretically, this re-
gion provides the greatest likelihood of the design being able to satisfy the given constraints.
Nonetheless, there are a number of limitations to this approach. The main limitation of this
method is that of the experience database. The method can only provide guidance based on the
observed previous designs. Therefore, it can be difficult to explore novel regions in the design
space as will occur when new technology appears. The second limitation is that this approach
does not directly provide a designer with anyunderstandingof the design domain. It is this un-
derstanding that will help a novice designer become expert in the domain. However, it should
be possible to extract this understanding from the stochastic design model by computational
analysis of the induced design model.

This paper provided a preliminary perspective of an induced stochastic design model. Discus-
sions with industrial designers highlighted a set of key requirements. Given a specific design,
a common requirement is to modify some aspect of the design. There will be a number of
alternative means of achieving this modification, however typically each will be at the expense
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of further effects on the design. It would therefore be preferable to be aware of all the trade-offs
that involve the desired variable to be changed. There are two options to provide support for
this issue: the first is to extract the trade-offs involving the desired variable and the second is
to compute some estimate of total change to the full design for each possible action.

Ultimately, the aim of this research is to feed into the knowledge management aspects. This will
be achieved through the analysis of induced design models. Prior to this analysis, the induction
algorithms and models need to be validated. This work provides the first step towards that
goal by introducing an environment where models can be induced and subsequently used by
industrial designers. By selecting understood design domains, domain experts will be able to
verify the induced models, and thereby validate the induction approach. Once the approach
has been validated, the models will be analysed to extract domain knowledge. This knowledge
then becomes explicit, and can be used to document the design domain.
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