
INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN 

ICED 03 STOCKHOLM, AUGUST 19-21, 2003 

THE IDENTITY OF FREEFORM SHAPE FEATURES 

C. Wang, J. S. M. Vergeest, W. F. Bronsvoort, W. F. van der Vegte 

Abstract 
The identification of freeform shape features is crucial in shape analysis and design 
knowledge retrieval. This paper focuses on the exploration of the geometric invariance of a 
freeform shape feature, and the identity measurements are derived based on the invariant 
attributes of the Fourier spectrum, including the Fourier shape identity, the normalized 
Fourier shape identity, the surface curvature-based intrinsic shape identity, and the 
cumulative shape identity. Effectiveness of these identity definitions is analysed, and 
efficiencies are evaluated. Working exclusively on the spatial distribution of the freeform 
feature, the proposed definitions are neutral and independent of low-level geometric 
representations. 
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1 Introduction 
Shape identity is a unique description of the geometry, which is essential in shape registration. 
It plays an important role in invariant shape description/representation, pattern recognition, 
and design knowledge reuse [8] [19]. A freeform shape feature (FSF) is a high-level 
geometric entity representing the continuous spatial distribution without prismatic geometric 
components, such as sharp edges or slots, and other associate attributes. The freeform shape 
descriptor is of great importance in CAD model representation and identification. 
Conventionally, shape descriptors are categorized as (a), boundary-based descriptors; and (b), 
regional-based descriptors [20]. The former represents shapes according to the boundary 
information, such as radius, contour, and chord length; the latter represents shape by regional 
information, such as shape matrices based on the relative areas of the shape contained in 
concentric rings located in the shape centroid. In boundary-based approaches, the global and 
local shape matching metrics for 2D shape description include global statistical approaches 
based on a method of moments [3], Fourier shape descriptors (FSD) [2] [15] [18] [21], 
wavelet shape descriptors that take the local geometric attributes into consideration, such as 
curvature and slope, and multi-resolution shape descriptors [6] [10] [12]. In recent years, the 
study of 3D shape analysis and processing using signal processing approaches has attracted 
more attention [11] [15] [20] [17]. In this field, metrics and some 3D shape descriptors have 
been widely used in conducting spatial shape analysis [16]; for instance, methods for 
processing point-sampled objects using spectral-based approaches have been investigated 
[13]. However, most of the existing shape identity measurements are either computationally 
expensive [20] or lack generality [8].  

Fourier transforms (FTs) have been applied in different subjects helping to explore the nature 
of a specific phenomenon. It seems promising to derive a unique and invariant identity for 
local shape representation based on its corresponding FT spectrum. This paper will 
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concentrate on the identity definitions for FSFs using their geometric distributions, and 
derives the identity from the aggregations of the invariant shape attributes, namely its FT 
spectrum. Working exclusively with the local shape distribution, the proposed approaches are 
independent of low-level representations, such as data structure and topology, and capable of 
handling mesh models, point cloud models and NURBS-based surface models.  

2 Fourier descriptors for 2D shapes 
In pattern recognition, the FTs show their particular ability to decompose a complex shape 
into understandable mathematical representations, like a graph, power spectrum, or phase-
based description [10]. The FSD, extended from the theory of FT, provides a unique 
representation of a spatial shape in the frequency domain. 

2.1 The representation of a 2D shape 
Definition 1: A mapping  is called a representation of a 2D shape  under , where 

 is the 2D real space. 

2: →Sf S f
2

Obviously,  should possess the following properties: f

• Uniqueness: i.e., for a s , where S∈ s  is an element of S , there is one and only one 
2∈r , so that . This is of crucial importance for the identification of different 

objects without ambiguity. 
rsf =)(

• Invariance: This means that the representation of S  should be invariant under affine 
transformations, such as translation, rotation, scaling and reflecting. 

• Completeness: This refers to the range of a representation, in which both global shape 
and local detail should be contained. 

• Sensitivity: i.e., the ability of a representation to reflect easily the differences between 
two objects. 

• Robustness: This refers to the ability of the representation under noise affection. For 
instance, the differentiable function f  behaves robust under input noise, since 

. dxxfxfdxxfdy )()()( '≈−+=

A 2D shape can be represented in terms of its discrete coordinates, i.e., s , for 
. Further, it can be treated as a complex number s , for 
. Although the interpretation of the sequence was recast, the nature of the 

boundary shape itself remains unchanged [10]. 

[ ])(),()( kykxk =

)()() kjykxk +=1,,2,1,0 −= Kk L

1,,2,1,0 −= Kk L

(

2.2 Fourier descriptor for 2D shapes and its invariance 
Definition 2. Let s  for )(k 1,,1,0 −= Kk L
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where 1−=j . The complex coefficients a  are also called the Fourier descriptor (FD) of 
the 2D shape . And the inverse DFT of these components restores , i.e.,  
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The Fourier spectrum, phase angle and the power spectrum is given by 
)()()()( 222 uIuRuauP +==  (3) 









= −
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uR
uIuφ  (4) 

where  and  are the real and imaginary parts of a ; )(uR )(uI )(u )(ua  is the Fourier spectrum, 
 the power spectrum and )(uP )(uφ  the phase angle. 

The properties of the FD are summarized in Table 1. 

Table 1. Basic properties of the Fourier shape descriptor 

Transformation Boundary Fourier Descriptor 
Identity )(ks  )(ua  
Rotation θj

r eksks )()( =  θj
r euaua )()( =  

Translation xyt ksks ∆+= )()(  )()()( uuaua xyt δ∆+=  
Scaling )()( kskss α=  )()( uauas α=  

Starting point )()( 0kksksp −=  Kukj
p euaua /2 0)()( π−=  

The fundamental characteristics of the FSD are clearly demonstrated by the 1D DFT. 
However, as a matter of fact, these characteristics are directly inherited in the 2D DFT. 

3 The Fourier model of a 3D shape 
To explore the invariance of the 3D shape applying FSD a prerequisite is to find a proper 
representation of the shape. Even though some representations proposed to describe a 3D 
surface using additional variables [20], we adopt the neutral representation of the shape as the 
input of the FSD, from which the invariant identity will be derived. 

3.1 The discrete representation of a 3D shape 
A 3D FSF or the region of interest (ROI) on an existing model can be represented by a series 
of discrete sections, which represents a spatial shape distribution (a vector field) of a point set. 
They constitute the overall shape geometry in the form of a matrix of the sampling points.  

Definition 3. (Sampling scheme) For a freeform shape feature with feature surface s , ),( vus=

}1,,1,0;1,,1,0|),({ −=−== NnMmvusS nm LL

]1,0[]1,0[ −×− NM

 is called a spatial shape distribution, and 
 the sampling grid. When u , , k

k U= }1,,1,0|),({ −== NjvUsS j
kk L 1,,1,0 −=k ML , 

Section u=Uk

Section v=Vk

(u0,v0) (uM-1,v0)

(u0,vN-1) (uM-1,vN-1)

Figure 1. Sampling scheme of the freeform shape feature 
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is called the -th section of . The same definition can be given to . k u S k
k Vv =

1S
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The sampling distribution of a shape feature is invariant of sampling direction and starting 
point. For example, changing the starting point of sampling results in a variation of the row or 
column in the sampling matrix. But this does not change the computational property of the 
matrix, i.e., by transferring the row or the column the matrix could be modified without 
hurting its nature. Figure 1 depicts the sampling scheme, in which the correspondence 
between parametric domain and the spatial domain is shown. Be noticed that the sections on 
the sampled shape may be curved in some cases. In addition, Figure 1 is only for explanation 
purpose; the parametric domain is not vital. For instance, for a point cloud model, we can still 
obtain the sampling matrix even though it is not yet parameterized. 

3.2 The 3D Fourier shape model 
Definition 4. (3D Fourier shape model) A sampled distribution given by Definition (3) can 
be equivalently represented by means of the DFT as: 

( ) { },,101,,10),(11 −∈−∈ℑ=ℑ= −− N,,ζM,|τfF ss LLζτ  (5) 

where  denotes the reverse FT, ( )⋅ℑ−1 sF  the matrix of forward FT of S , and  its 
elements given by 
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And the Power spectrum is defined as: 
( ) ( )
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where  and  are the real and imaginary part of  respectively, i.e., 
 and 

,(τsR

(τsR=
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),ζτ

f

),( ζτsf + 1−j .  

Due to the fact that the classical FT theory could be extended to arbitrary 3D grid structures 
with minor pre-processing [11] [17], therefore, in Equation (6), the shape distribution can be 
any sampled point sets, for instance, a point cloud, or a vertex set of a mesh. The 3D Fourier 
shape model (FSM) helps to implements the transition of the shape from spatial into 
frequency domain. 

4 Identity of freeform shape features 
As a matter of fact, some of the existing shape descriptors tend to be complex in 
representation [3] [4] [6] [15], while others are computationally expensive [16] [1] [9] [22]. 
Shape descriptors based on the neutral representation could help in getting rid of the 
complexity of the underlying model, while providing acceptable efficiency for the 
computation of the shape identity derived. 

4.1 The Fourier shape identity 
From the basic properties of the FT, we learn that the coefficient magnitude 

( ) 1,,0;1,,0,, −=−= NMf s LL ζτζτ  is rotation invariant; and the magnitude of the coefficients 

excluding position information ( ) 1,,1;1,,1;0)0,0(, −=−== NMff ss LL ζτζτ  is translation invariant 
as well. For instance, let us suppose a rotation around z -axis is being applied to Equation (6), 
then, the new FT of the shape distribution becomes 
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where θ  is the rotation angle. The magnitude of the FT spectrum element is 
),(sincos),(),(),(),( 22 ζτθθζτζτζτζτ θθ

θ
ssjsjss ffefeff =+=== , 

remaining unchanged. Similar proof can be given to the rotation around a spatial vector. 

Definition 5. (Fourier shape identity) Under the sampling scheme given by Definition 3, the 
FT of a FSF in Equation (6) excluding the position information, i.e., , is called the 
Fourier shape identity (FSI).  

0)0,0( =sf

Evidently, the invariant properties of the magnitude of the elements of sF  under affine 
transformation make it suitable for being an identity. However, using the sF  to represent the 
shape feature S  is rather complicated, even not applicable in terms of shape knowledge 
indexing or reusing. For example, for a M N×  matrix of the sampling points, the FSI needs to 
record three M  matrixes in terms of the coordinate components. Another concern is that, 
the shape scaling operation should not result in a quantity change of the shape identity. This 
is crucial when the shape itself rather than its size is the main concern. Obviously, the FSI 
does not satisfy this requirement. Hence, a simplified definition is needed. 

N×

Definition 6. (Normalized Fourier shape identity) A normalized cumulative function defined 
on the Fourier shape identity with the following form 
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where ( ) ( )
otherwise
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= ζτζτ , is called the normalized Fourier shape 

identity (NFSI). 

NFSI  is strictly invariant of rotation, translation and scaling, e.g., for a rotation e ,  )(rAp θj
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Figure 2. The Fourier shape identity of a freeform shape and its normalized Fourier shape identity. (a), The 

shape feature in a ROI; and its Fourier identity and corresponding normalized Fourier identity in (b), (b1)—x-
coordinate component, (c), (c1) y-coordinate component, and (d), (d1) z-coordinate component. 
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Since the zero-frequency item is excluded from sF , i.e., ( ) 00,0 =sf , therefore, ( )rpA  is 
invariant of translation as well. In addition, a scaling of the shape may result 
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Figure 2 shows the A  of a given shape feature in the ROI in terms of its ( )rp x ,  and y z -
coordinate components. The Fourier spectrum in Figure 2-(b), (c), and (d) are pre-processed 
with logarithm, otherwise their value is too small. 

4.2 The intrinsic shape identity 
Recalling the fundamental issues in computational geometry, the curvature distribution on a 
surface curve is invariant of affine transformation. In fact, by considering each sampling 
section in Definition 3, we can immediately infer that the curvature distribution on the section 
contour is affine invariant, i.e., c  is invariant, where 

 refers to the maximum and minimum curvatures. The collection of the curvatures on all 
sections constitutes the invariant matrix 
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which the intrinsic shape identity could be derived. 

Definition 7. (Intrinsic shape identity) The distributions of the principal curvatures of a shape 
under the sampling scheme given by Definition 3, denoted as ( ){ ;2,1|, == ivuc nmiC  

, are invariant under affine transformations. Their corresponding 
Fourier spectrums  
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c
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are called the intrinsic shape identities (ISI), which are uniquely defined by the curvature 
distributions, where  are the components of the FT of both maximum and 
minimum principal curvature distributions. The distribution of the maximum principal 
curvature is called the first intrinsic identity 
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where  denotes the curvatures at ( ) 2,1,, =ivuci ( )vu, . 

Definition 8. (Cumulative shape identity) The cumulative functions defined on the intrinsic 
shape identity given by Equation (9) with the following form 
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(CSI).  is called the first cumulative shape identity, and ( )rf
2A  the second cumulative 

shape identity, with respect to first and second principal curvatures of the surface. In addition, 
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the ISI is invariant under variations in (  parameterisation. These properties are pre-
determined by the characteristics of the curvature invariance. 
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Figure 3. The intrinsic shape identities of a feature and its cumulative identities. (a), (a1), The head with the 
ROI on the nose as a shape feature; (b), (b1), The first intrinsic identity of the feature and its first cumulative 

identity; (c), (c1), The second intrinsic identity of the feature and its second cumulative identity. 

The computation of the principal curvatures depends on the underlying representation of the 
model. For instance, if the underlying model data is a point cloud or a mesh model, the 
calculation of both principal curvatures has to be approximated by using adjacent points or 
vertices. Feature fitting technique could help to find the equivalent NURBS representation of 
the surface. Figure 3 depicts an example of the intrinsic shape identities and their 
corresponding cumulative shape identities of a form feature—the nose.  

5 Discussions and considerations 
Unlike most of the existing featured-based shape knowledge indexing approaches, which 
analyses shapes by structural feature elements, the method proposed in this paper focuses on 
local ROI of the FSF. It could not be applied to directly handle structured global shapes. 

Invariance issues. One of the most important criterions for a shape identity is that it should 
be invariant under different representations. In the previous sections several shape identities 
were theoretically proven to possess different level of invariant properties under 
transformation, starting point, and re-parameterisation. This is because of the intrinsic nature 
of the cumulative function. For instance, the changing of the start point in NFSI means that 
the row or the column of the Fourier spectrum sF  may be rearranged. We can easily prove 
that the rearranged matrix is computationally equivalent to the original one, i.e., F , and 
the NFSI remains unaffected.  

ss F='

Robustness. On the other hand, under the input noises of the ROI the shape identity should 
also behave invariantly. As demonstrated in Figure 4, we choose different ROIs containing 
the same shape feature, and compare the variation of both the NFSI and the CSI. The results 
show that the former identity is more stable than the latter in our experiment environment. 
The reason for the unstable behaviour of the CSI is because of the position variation of the 
resampled points due to the boundary changing. To apply CSI, the repositioning of the 
sampling starting point is needed in order to compensate the deviation in CSI introduced by 
boundary variation. Table 2 gives the result analysis of Figure 4, in which we can observe 
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that the maximum absolute variation for NFSI in y-axis is about 0.04; and 9.2% relative to 
the value threshold of this component; and for CSI in first curvature is about 1.27 and 28%, 
respectively.  

(a)

(b)

(c1)

(d1)

(c3)(c2)

(d2)

r r

r

r

r

A
P x(r

)

A
P z( r
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A
P y(
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A
f 2(

r)

A
f 1(

r )

 
Figure 4. Robustness analysis for the normalized Fourier shape identities and the cumulative shape identities 

under boundary variation (Blue colour for (a) and red colour for (b)). (a), (b), Different ROIs contain the same 
shape feature; (c1), (c2), (c3), The variation of the normalized Fourier shape identity in x, y, and z-coordinate 

components. (d1), (d2), The variation of the first and the second cumulative shape identities. 

Identity variations under different input data can be obtained by measuring the norm of the 
identity in the same category. For instance, the deviation of the cumulative shape identity for 

Figure 4-(a) and (b) can be measured by 2,1,)()(
2

1
=∑ −=

=
irArAD

M

r

f
ia

f
ib

c
i . The empirical valve-values 

given according to the experiences of the user can be employed to decide whether feature (a) 
and (b) are the same or similar to each other. For example, if D , where 2,1, =≤ ii

c
i ε 2,1, =iiε  is 

the given valve-value, then the shapes of the ROIs in Figure 4-(a) and (b) are thought as 
similar. 

Table 2. Data analysis for different identities 

Absolute FS value (Max.) No. Name of 
Identity Value Variation 

Relative variation  
 (%) (Max.) 

x 0.154249683 0.006505415 4.217457512 
y 0.430999160 0.040633142 9.427661532 

1 NFSI 

z 0.226709113 0.013184860 5.815761088 
c1 4.511067867 1.271586418 28.188146478 2 CSI 
c2 3.953641176 1.083031654 27.393271318 

Legend:   FS Fourier Spectrum 
  NFSI Normalized Fourier Shape Identity 
  CSI Cumulative Shape Identity

Simplicity. Supposing the sampling grid is 64== NM , then the element number in the FSI is 
, while that in the NFSI is 3236464 ×× 3× ; in the ISI the number of elements is 64 , and 

that in the CSI is 32 . From FSI to CSI, the representation of the shape identities becomes 
more and more simple. This dramatic simplification on the representation of the identities can 
greatly promote the speed of shape knowledge indexing, while saving enormous storage 
space. 

264 ××

2×

Adaptability. Since the identities are defined on the neutral discrete shape distribution, the 
input data for the calculation of the feature identity can be either from a point cloud model, a 
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mesh model, or a NURBS-based surface model. Due to the input restriction of the 2D DFT, 
the proposed identity measurements for freeform shape features are exclusively working 
within the ROI, where the sampling boundary is explicitly defined. However, as a matter of 
fact, the fundamentals in this paper could be extended to handle the global shape by treating 
it as a set of form features.  

6 Conclusions and future work 
In this paper, we have presented and evaluated several measurements regarding the identity 
of FSFs, namely the FSI, the NFSI, the ISI, and the CSI. They could meet with different 
application requirements. For instance, the NFSI is computationally cheaper than CSI, while 
the CSI is better than NFSI in storage consumption. All these identity definitions were 
defined in a unified framework, while avoiding the complexity of the underlying model. To 
compensate the computational and storage expense, the identity definitions in this paper in 
turn become more and more simple, providing multiple choices to meet different needs. The 
experimental results show that the measurements given as the identity of the FSF is robust 
and applicable. Finally, the results of our work could be utilized to facilitate the shape 
research and design knowledge processing, especially in industrial design, where the shape 
aspect is the most concerned. 

Future work includes: extensive comparative study concerning existing shape knowledge 
indexing methods; the applications of the proposed approaches; adaptive sampling strategy 
for model simplification; indexing scheme for global shape knowledge coding; shape 
knowledge estimation from partial or sparse Fourier spectrum; methodology for the fusion of 
shape analysis and shape modeling knowledge. 

References 
[1] Aherne, F., Thacker, N., Rockett, P., “Optimal pairwise geometric histograms”, 

Proceedings of the Eighth British Machine Vision Conference, 1997, pp. 480-490 

[2] Arbter, K., Snyder, W. E., Burkhardt, H., and Hirzinger, G., “Application of affine-
invariant Fourier descriptors to recognition of 3D objects”, IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 12, no. 7, 1990, pp. 640-647. 

[3] Belkasim, S. O., Shridhar, M., and Ahmadi, M., “Pattern recognition with moment 
invariants: A comparative study and new results”, Pattern Recognition, vol. 24, 1991, 
pp. 1117-1138. 

[4] Besl, P. J., McKay, N. D., “A method for registration of 3D shapes”, IEEE Transactions 
on Pattern Analysis and Machine Intelligence, Vol. 14, N0.2, February 1992, pp. 239-
256. 

[5] Cavendish, J. C., “Integrating feature-based surface design with freeform deformation”, 
Computer-Aided Design, 1995, Vol.27, No.9, pp703-711. 

[6] Chuang, G. C.-H., Kuo, C.-C. J., “Wavelet descriptor of planner curves: theory and 
application”, IEEE Transactions on Image Processing, Vol. 5, No. 1, January 1996, 
pp.56-70.  

[7] Fontana, M., Giannini, F., Meirana, M., “A freeform feature taxonomy”, Proceedings of 
EUROGRAPHICS’99, 1999, vol. 18, No. 3 

9 
 



[8] Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., “A search 
engine for 3D models”, ACM Transactions on Graphics, Vol. 22, No.1, January 2003, 
pp. 83-105 

[9] Gain, J., Scott, J., “Fast polygon mesh querying by example”, SIGGRAPH Technical 
Sketches, 1999 

[10] Gonzaalez R. C., Woods R. E., “Digital image processing”, Prentice-Hall, Inc, 2002 

[11] Karni, Z., Gotsman, C., “Spectral compression of mesh geometry”, Proceedings of 
ACM SIGGRAPH 2000, pp.279-286, 2000 

[12] Kauppinen, H., Seppanen, T., Pietikainen, M., “An experimental comparison of 
autoregressive and Fourier-based descriptors in 2D shape classification”, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol.17, No.2, February 
1995. 

[13] Museth, K., Breen, D. E., Whitaker, R. T., Barr, A. H., “Level set surface editing 
operators”, ACM Transactions on Graphics (TOG), Proceedings of the 29th annual 
conference on computer graphics and interactive techniques, Vol. 21, No. 3, pp. 330-
338, July 2002 

[14] Pauly, M., Gross M., “Spectral processing of point-sampled geometry”, Proceedings of 
ACM SIGGRAPH 2001, August 2001, pp. 379-386. 

[15] Persoon, E., Fu, K., “Shape discrimination using Fourier descriptors”, IEEE 
Transactions on System, Man and Cybernetics, vol. 7, 1977, pp. 170-179. 

[16] Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D., “Shape distributions”, ACM 
Transactions on Graphics, Vol.21, No. 4, Pctumber 2002, pp. 807-832 

[17] Taubin, G., “A signal processing spproach to fair surface design”, Proceedings of ACM 
SIGGRAPH’95, 1995, pp. 351-358 

[18] Tello, R., “Fourier descriptors for computer graphics”, IEEE Transactions on Systems, 
Man, and Cybernetics, vol. 25, no. 5, May 1995, pp. 861-865. 

[19] Wang C., Vergeest J. S.M., et. al., “Cross model shape reuse: copying and pasting of 
freeform shape features”, CD-ROM Proceedings of DAC’02, Montreal, Canada, 
September 29 - October 2, 2002 

[20] Wu, M. F., Sheu, H. T., “Representation of 3D surfaces by two variable Fourier 
descriptors”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, 
N0.8, August 1998, pp. 858-863 

[21] Zhan, C. T., Roskies, R. Z., “Fourier descriptors for plane closed curves”, IEEE 
Transactions on Computers, vol. 21, no. 3, 1972, pp. 269-281. 

[22] Zhang, D., Hebert, M., “Harmonic maps and their applications in surface matching”, 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR’99), pp. 2524-
2530, 1999 

For more information please contact: 

Chensheng Wang     Delft University of Technology, Landbergstraat 15, 2628 CE Delft  The Netherlands 
Tel: +31-15-2788173    Fax: +31-15-2781839    E-mail: c.wang@io.tudelft.nl 
URL: http://dutoce.io.tudelft.nl/~chensheng/c.wang.html 

10 
 

mailto:c.wang@io.tudelft.nl
http://dutoce.io.tudelft.nl/~chensheng/c.wang.html

	Introduction
	Fourier descriptors for 2D shapes
	The representation of a 2D shape
	Fourier descriptor for 2D shapes and its invariance

	The Fourier model of a 3D shape
	The discrete representation of a 3D shape
	The 3D Fourier shape model

	Identity of freeform shape features
	The Fourier shape identity
	The intrinsic shape identity

	Discussions and considerations
	Conclusions and future work

